User Manual

Tektronix

80C00 Series Optical Sampling Modules 071-0435-04

This document applies to firmware version 1.00 and above.

www.tektronix.com

Copyright © Tektronix, Inc. All rights reserved.

Tektronix products are covered by U.S. and foreign patents, issued and pending. Information in this publication supercedes that in all previously published material. Specifications and price change privileges reserved.

Tektronix, Inc., P.O. Box 500, Beaverton, OR 97077-0001

TEKTRONIX and TEK are registered trademarks of Tektronix, Inc.

WARRANTY

Tektronix warrants that the products that it manufactures and sells will be free from defects in materials and workmanship for a period of one (1) year from the date of shipment. If a product proves defective during this warranty period, Tektronix, at its option, either will repair the defective product without charge for parts and labor, or will provide a replacement in exchange for the defective product.

In order to obtain service under this warranty, Customer must notify Tektronix of the defect before the expiration of the warranty period and make suitable arrangements for the performance of service. Customer shall be responsible for packaging and shipping the defective product to the service center designated by Tektronix, with shipping charges prepaid. Tektronix shall pay for the return of the product to Customer if the shipment is to a location within the country in which the Tektronix service center is located. Customer shall be responsible for paying all shipping charges, duties, taxes, and any other charges for products returned to any other locations.

This warranty shall not apply to any defect, failure or damage caused by improper use or improper or inadequate maintenance and care. Tektronix shall not be obligated to furnish service under this warranty a) to repair damage resulting from attempts by personnel other than Tektronix representatives to install, repair or service the product; b) to repair damage resulting from improper use or connection to incompatible equipment; c) to repair any damage or malfunction caused by the use of non-Tektronix supplies; or d) to service a product that has been modified or integrated with other products when the effect of such modification or integration increases the time or difficulty of servicing the product.

THIS WARRANTY IS GIVEN BY TEKTRONIX IN LIEU OF ANY OTHER WARRANTIES, EXPRESS OR IMPLIED. TEKTRONIX AND ITS VENDORS DISCLAIM ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. TEKTRONIX' RESPONSIBILITY TO REPAIR OR REPLACE DEFECTIVE PRODUCTS IS THE SOLE AND EXCLUSIVE REMEDY PROVIDED TO THE CUSTOMER FOR BREACH OF THIS WARRANTY. TEKTRONIX AND ITS VENDORS WILL NOT BE LIABLE FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES IRRESPECTIVE OF WHETHER TEKTRONIX OR THE VENDOR HAS ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES.

Table of Contents

General Safety Summary	iii
Preface	v
Manual Structure	v
Related Manuals	v
Contacting Tektronix	vii
Getting Started	1
Product Description	1
Options and Accessories	6
Installation	8
Electrostatic Discharge	9
Module Installation	9
Operating Basics	11
Usage	11
Connecting Optical Signals	11
Attenuating Optical Signals	12
System Interaction	13
Front Panel Controls	13
Channel Selection	13
Optical Input Connector	14
Clock Recovery Outputs	14
Hold-Down Screws	15
Commands From the Main-Instrument Front Panel	16
Programmer Interface Commands	16
User Adjustments	17
Cleaning Optical Connectors	17
Optical Dark Level Compensation	20
User Wavelength Gain Compensation	20
Reference	21
Wavelength, Filter, and Bandwidth Selection	21
Clock Recovery	22
Optical Bandwidth	23
Bandwidth for Unfiltered Frequency Settings	24
Bandwidth for Reference Receiver settings	24
Specifications	25
Glossary	57
Index	61

List of Figures

Figure 1: Optical module, 80C01-CR shown	5
Figure 2: Module compartments	8
Figure 3: Installing a large module	10
Figure 4: Optical module, 80C01-CR shown	14
Figure 5: System Vertical menu	16

List of Tables

Table 1: Application software version required	1
Table 2: Optical module features (80C01 - 80C04 and 80C09)	1
Table 3: Optical module features (80C05 - 80C06)	2
Table 4: Optical module features (80C07 and 80C08)	3
Table 5: Optical module features (80C08B and 80C10)	3
Table 6: Available options	6
Table 7: Standard accessories	7
Table 8: Optional accessories	7
Table 9: Clock recovery outputs	14
Table 10: Wavelength, Filter, and Bandwidth selections	21
Table 11: Optical modules - Descriptions	25
Table 12: Optical modules - Acquisition	27
Table 13: Optical Power Meter	49
Table 14: Optical modules - Clock recovery options	
(CR, CR1, and CR2)	50
Table 15: Optical modules - Mechanical	54
Table 16: Optical modules - Environmental	55

General Safety Summary

Review the following safety precautions to avoid injury and prevent damage to this product or any products connected to it. To avoid potential hazards, use this product only as specified.

While using this product, you may need to access other parts of the system. Read the *General Safety Summary* in other system manuals for warnings and cautions related to operating the system.

To Avoid Fire or Personal Injury Ground the Product. This product is indirectly grounded through the grounding conductor of the mainframe power cord. To avoid electric shock, the grounding conductor must be connected to earth ground. Before making connections to the input or output terminals of the product, ensure that the product is properly grounded.

Observe All Terminal Ratings. To avoid fire or shock hazard, observe all ratings and markings on the product. Consult the product manual for further ratings information before making connections to the product.

Do not apply a potential to any terminal, including the common terminal, that exceeds the maximum rating of that terminal.

Do Not Operate Without Covers. Do not operate this product with covers or panels removed.

Avoid Exposed Circuitry. Do not touch exposed connections and components when power is present.

Wear Eye Protection. Wear eye protection if exposure to high-intensity rays or laser radiation exists.

Do Not Operate With Suspected Failures. If you suspect there is damage to this product, have it inspected by qualified service personnel.

Do Not Operate in Wet/Damp Conditions.

Do Not Operate in an Explosive Atmosphere.

Keep Product Surfaces Clean and Dry.

Provide Proper Ventilation. Refer to the manual's installation instructions for details on installing the product so it has proper ventilation.

Symbols and Terms

Terms in this Manual. These terms may appear in this manual:

WARNING. Warning statements identify conditions or practices that could result in injury or loss of life.

CAUTION. Caution statements identify conditions or practices that could result in damage to this product or other property.

Terms on the Product. These terms may appear on the product:

DANGER indicates an injury hazard immediately accessible as you read the marking.

WARNING indicates an injury hazard not immediately accessible as you read the marking.

CAUTION indicates a hazard to property including the product.

Symbols on the Product. The following symbols may appear on the product:

(Earth) Terminal

Preface

This is the user manual for the 80C01, 80C02, 80C03, 80C04, 80C05, 80C06, 80C07, 80C08, 80C08B, 80C09, and 80C10 Optical Modules and their available options. It includes the following information:

- Describes the capabilities of the modules and how to install them
- Explains how to operate the modules: how to control acquisition, processing, and input/output of information
- Lists specifications of the modules

Manual Structure

This manual is composed of the following chapters:

- *Getting Started* shows you how to configure and install your optical module.
- *Operating Basics* describes controlling the module using the front panel and the instrument user interface.
- *Reference* provides information on wavelength selection, clock recovery and optical bandwidth.
- Specifications contains specifications for the 80C01, 80C02, 80C03, 80C04, 80C05, 80C06, 80C07, 80C08, 80C08B, 80C09, and 80C10 Optical Modules.

Related Manuals

This manual is part of a document set of standard-accessory manuals and online documentation; this manual mainly focuses on installation and background needed to use the module features. See the following list for other documents supporting 8000-series and 8000B-series products. Manual part numbers are listed in the *Accessories* section of your *CSA8000B & TDS8000B User Manual*.

Manual name	Description	
CSA8000 and TDS8000 Online Help	An online help system, integrated with the User Interface application that ships with the CSA8000, TDS8000, CSA8000B, and TDS8000B instruments.	
CSA8000B & TDS8000B Reference	A quick reference to major features of the instrument and how they operate.	
CSA8000B & TDS8000B User Manual	The user manual for the CSA8000B and TDS8000B instruments.	
80E01, 80E02, 80E03, 80E04, and 80E06 Electrical Sampling Modules User Manual ¹	The user manual for the electrical modules, included as a standard accessory if you ordered electrical modules with your instrument. Shipped in the sampling module package, not the main instrument package.	
CSA8000 & TDS8000 Programmer Guide	An online help document that provides an alphabetical listing of the programming commands and other information related to controlling the instrument over the General Purpose Interface Bus (GPIB).	
CSA8000 & TDS8000 Service Manual	An optional manual describes how to service the instrument to the module level. Manual must be ordered separately.	

¹ You can insert the sampling module user manuals in Appendix C of the *CSA8000B & TDS8000B User Manual*.

Contacting Tektronix

Phone	1-800-833-9200*
Address	Tektronix, Inc. Department or name (if known) 14200 SW Karl Braun Drive P.O. Box 500 Beaverton, OR 97077 USA
Web site	www.tektronix.com
Sales support	1-800-833-9200, select option 1*
Service support	1-800-833-9200, select option 2*
Technical support	Email: techsupport@tektronix.com 1-800-833-9200, select option 3* 6:00 a.m 5:00 p.m. Pacific time

* This phone number is toll free in North America. After office hours, please leave a voice mail message.
 Outside North America, contact a Tektronix sales office or distributor; see the Tektronix web site for a list of offices.

Preface

Getting Started

The 80C01, 80C02, 80C03, 80C04, 80C05, 80C06, 80C07, 80C08, 80C08B, 80C09, and 80C10 Optical Modules and their available options are high-performance optical modules that support high bandwidth telecom and datacom standards. These modules can be installed in the CSA8000, CSA8000B, TDS8000, and TDS8000B instruments.

Proper operation of the sampling modules requires that the appropriate TDS8000 and CSA8000 application software is installed on the main instrument. The versions according to the specific module are shown in the following table. To display the version installed, select *About TDS/CSA8000* from the Help menu of the main instrument.

Modules	TDS/CSA8000 application software version
80C01, 80C01-CR, 80C02, 80C02-CR, 80C03, 80C03-CR	1.0.0 or greater
80C04, 80C04-CR1	1.1.0 or greater
80C04-CR2, 80C05, 80C06	1.2.0 or greater
80C07, 80C07-CR1, 80C08, 80C08-CR1, 80C09, 80C09-CR1	1.3.0 or greater
80C08B, 80C08B-CR1, 80C08B-CR2, 80C10	1.4.0 or greater

Table 1: Application software version required

Product Description

The optical modules provide the features shown in Tables 2, 3, and 4. Table 8 on page 19 also provides wavelength selections, filter, and bandwidth specifications for each module. Figure 1 shows the optical module controls, connectors, and indicators.

Table 2: Optical module features (80C01 - 80C04 and 80C09)¹

Feature	80C01	80C02, 80C04 & 80C09	80C03
Number of input channels	1	1	1
Effective wavelength range	1100 nm to 1650 nm	1100 nm to 1650 nm	700 nm to 1650 nm

Feature	80C01	80C02, 80C04 & 80C09	80C03
Reference receiver filters	OC-12/STM-4, OC-48/STM-16, OC-192/STM-64	OC-192/STM-64, FEC10.6646Gb/s (80C04 only) ² FEC10.70922Gb/s (80C09 only) ⁵	FC1063, GBE, 2.50 Gb/s, OC-48/STM-16
Clock recovery, option	OC-12/STM-4, OC-48/STM-16	OC-192/STM-64, FEC10.6646Gb/s (80C04 only) FEC10.709225Gb/s (80C09 only)	FC1063, GBE, 2.50 Gb/s, OC48/STM-16
Absolute maximum nondestructive optical input ³	5 mW average power; 10 mW pe	eak power at wavelength with highe	est relative responsivity.
Internal Fiber Diameter	9 μm/125 μm single mode	9 μm/125 μm single mode	62.5 μm/125 μm multimode ⁴
Optical return loss	> 30 dB	> 30 dB typical (or better 80C09)	> 14 dB for multimode fiber > 28dB for single-mode fiber
Minimum optical bandwidth at optical connector	>20 GHz	> 30 GHz	> 2.3 GHz
Output zero	$<$ 10 μW immediately after dark calibration		< 500 nW immediately after dark calibration
Independent channel deskew	Standard	Standard	Standard
Offset capability at front of module	Standard	Standard	Standard
Power meter	Standard	Standard	Standard

Table 2: Optical module features (80C01 - 80C04 and 80C09) (Cont.)¹

Table 3: Optical module features (80C05 - 80C06)

Feature	80C05	80C06
Number of input channels	1	1
Effective wavelength range	1520 nm to 1580 nm	1520 nm to 1580 nm
Reference receiver filters	OC-192/STM64	None
Clock recovery option	None	None
Absolute maximum nondestructive optical input ³	10 mW average power; 30 mW peak power at wavelength with highest relative responsivity.	20 mW average power; 60 mW peak power at wavelength with highest relative responsivity.
Internal fiber diameter	9 μm/125 μm single mode ⁴	9 μm/125 μm single mode ⁴
Optical return loss	> 30 dB	> 30 dB
Minimum optical bandwidth at optical connector	> 40 GHz	> 55 GHz, typical
Output zero	$<\!30~\mu\text{W}$ immediately after dark calibration	$<$ 30 μW immediately after dark calibration

Table 3: Optical module features (80C05 - 80C06) (Cont.)

Feature	80C05	80C06
Independent channel deskew	Standard	Standard
Offset capability at front of module	Standard	Standard
Power meter	Standard	Standard

Table 4: Optical module features (80C07 and 80C08)

Feature	80C07	80C08
Number of input channels	1	1
Effective wavelength range	700 nm to 1650 nm	700 nm to 1650 nm
Reference receiver filters	OC-3/STM-1, OC-12/STM-4, OC-48/STM-16	9.95328 Gb/s (10GBASE-W) 10.3125 Gb/s (10GBASE-R) ⁶
Clock recovery option	OC-3/STM-1, OC-12/STM-4, OC-48/STM-16	9.95328 Gb/s (10GBASE-W) 10.3125 Gb/s (10GBASE-R)
Absolute maximum nondestructive optical input ³	5 mW average power; 10 mW peak power at wavelength with highest relative responsivity.	1 mW average power; 10 mW peak power for 60ms.
Internal fiber diameter	62.5 μm/125 μm single mode ⁴	62.5 μm/125 μm multimode ⁴
Optical return loss	> 14 dB for multimode fiber> 24dB for single-mode fiber	> 14 dB for multimode fiber> 24 dB for single-mode fiber
Minimum optical bandwidth at optical connector	> 2.3 GHz	> 10 GHz
Output zero	< 500 nW immediately after dark calibra- tion +/- 2% (Vertical offset)	< 1 uW immediately after dark calibration +/- 2% (Vertical offset)
Independent channel deskew	Standard	Standard
Offset capability at front of module	Standard	Standard
Power meter	Standard	Standard

Table 5: Optical module features (80C08B and 80C10)

Feature	80C08B	80C10
Number of input channels	1	1 ⁸
Effective wavelength range	700 nm to 1650 nm	1310 nm +/- 30 nm 1550 nm +/- 30 nm

Feature	80C08B	80C10
Reference receiver filters	9.95328 Gb/s (10GBASE-W/ OC-192/STM64) 10.3125 (10GBASE-R) 10.51875 (10GFC)	OC-768/STM256 43.018 Gb/s G.709 FEC
Clock recovery option	9.95328 Gb/s (10GBASE-W/ OC-192/STM-64) (CR-1) ⁷ 10.3125 Gb/s (10GBASE-R) (CR-1 & CR-2) ⁷ 10.51875 Gb/s (10GFC) (CR-2 only) ⁷	None
Absolute maximum nondestructive optical input ³	1 mW average power; 10 mW peak power for 60ms.	20 mW average power; 60 mW peak power at wavelength with highest relative responsivity.
Internal fiber diameter	62.5 μm/125 μm multimode ⁴	9 μm/125 μm single mode ⁴
Optical return loss	> 14 dB for multimode fiber> 24 dB for single-mode fiber	> 30 dB
Minimum optical bandwidth	>10 GHz	> 60 GHz, minimum > 65 GHz, typical
Output zero	<1 uW immediately after dark calibration +/- 2% (Vertical offset)	1550 nm: ±[25 μW +0.04* Vertical Offset] 1310 nm: ±[35 μW +0.04* Vertical Offset]
Independent channel deskew	Standard	Standard
Offset capability at front of module	Standard	Standard
Power meter	Standard	Standard

Table 5: Optical module features (80C08B and 80C10) (Cont.)

- 1 Some values in the table are typical.
- 2 The 80C04 supports selection of two Reference Receiver filters: the OC-192 for 9.95328 Gb/s SONET/SDH standard and the 10.66Gb/s for the Forward Error Correction (FEC) rate of 10.664Gb/s. Option 80C04-CR1 adds OC-192 clock recovery only; option CR2 adds OC-192 and 10.664Gb/s clock recovery.
- 3 The 80C01, 80C02, 80C04, 80C05, 80C06, and 80C09 will remain functional at these levels, but the 80C03, 80C07, and 80C08 will saturate well below (<1 mW) due to their internal amplifiers.
- 4 Compatible with single-mode fiber of equal or smaller diameter.
- 5 The 80C09 supports selection of two Reference Receiver filters: the OC-192 for 9.95328 Gb/s SONET/SDH standard and the 10.71Gb for the Forward Error Correction (FEC) rate of 10.709Gb/s. Option 80C09-CR1 adds OC-192 clock recovery and 10.709Gb/s forward error correction clock recovery (data recovery at OC-192 and 10.709Gb/s FEC rates is not supported by the CR1 option.
- 6 The 80C08 supports selection of two clock recovery options: Option 80C08-CR1 adds 10GBASE-W (9.95328Gb/s) and 10GBASE-R (10.3125Gb/s) clock recovery only (no data recovery).
- 7 The 80C08B supports selection of two clock recovery options: Option 80C08B-CR1 adds OC-192 (9.95328Gb/s) and 10GBASE-R (10.3125Gb/s) clock recovery only (no data recovery); Option 80C08B-CR2 adds 10GFC (10.51875Gb/s) and 10GBASE-R (10.3125Gb/s) clock recovery only (no data recovery)
- 8 There are two separate optical inputs, one for 1310 nm and one for 1550 nm.

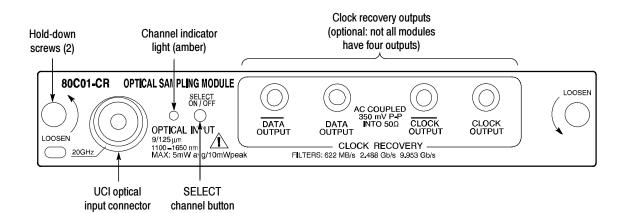


Figure 1: Optical module, 80C01-CR shown

Options and Accessories

This section lists the standard and optional accessories available for the sampling modules, as well as the product options.

Options The following options can be ordered for the instrument:

Option	Module	Description	
Option CR 80C01-CR		Adds 622.08 Mb/s and 2.48832 Gb/s clock recovery	
	80C02-CR	Adds 9.95328 Gb/s clock recovery	
	80C03-CR	Adds 1.0625 Gb/s, 1.2500 Gb/s, 2.48832 Gb/s, and 2.500 Gb/s clock recovery	
Option CR1	80C04-CR1	Adds 9.95328 Gb/s clock recovery	
	80C07-CR1	Adds 155/622/2488 Mb/s clock recovery	
	80C08-CR1	Adds 9.95328 Gb/s and 10.3125 Gb/s clock recovery	
	80C08B-CR1	Adds 9.95328 Gb/s and 10.3125 Gb/s clock recovery	
	80C09-CR1	Adds 9.95328 Gb/s and 10.709 Gb/s clock recovery	
Option CR2	80C04-CR2	Adds 9.995328 Gb/s and 10.664 Gb/s clock recovery	
	80C08B-CR2	Adds 10.3125 Gb/s and 10.51875 Gb/s clock recovery	
Option C3		Three years of calibration services	
Option C5		Five years of calibration services (80C08B only)	
Option D1		Calibration data report	
Option D3		Test data for calibration services in Option D1 (with C3 only)	
Option D5		Calibration data report (with C5 only)	
Option R3		Repair warranty extended to cover three years	
Option R5		Repair warranty extended to cover five years (80C08B only)	

Table 6: Available options

Standard Accessories

The following accessories are shipped with the instrument:

Table 7: Standard accessories

Item	Part number
80C00 Series Optical Sampling Modules User Manual	071-0435-xx
Certificate of Traceable Calibration for product at initial shipment	Not Orderable
Frequency response data ¹	Not Orderable
Software Upgrade	020-2372-xx
FC/PC UCI adapter, installed	119-4516-xx
Fiber cleaning kit	020-2357-xx
SMA male 50 Ω termination (installed, one per clock recovery output connector)	015-1022-xx

¹ Frequency response data is not provided for the 80C05 and 80C06 modules; however impulse and step response showing risetime is provided. Frequency response data is provided for the 80C08B filtered modes (9.953, 10.31, and 10.52 Gb/s) and 80C10 filtered modes (39.813 and 43.108 Gb/s) modules.

Optional Accessories

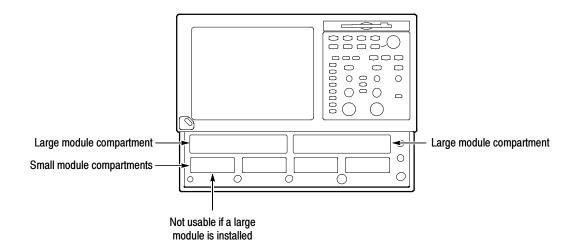

The following accessories are orderable for use with the sampling module at the time this manual originally published. Consult a current Tektronix catalog for additions, changes, and details:

Table 8: Optional accessories

Item	Part number
D4/PC Universal Optical Input (UCI) adapter	119-4514-xx
Biconic UCI adapter	119-4515-xx
FC/PC UCI adapter	119-4516-xx
SMA 2.5 UCI adapter	119-4517-xx
SC/PC UCI adapter	119-4518-xx
DIN/PC UCI adapter	119-4546-xx
DIAMOND 2.5 UCI adapter	119-4556-xx
SMA UCI adapter	119-4557-xx
DIAMOND 3.5 UCI adapter	119-4558-xx
ST/PC UCI adapter	119-4513-xx
3.5 male to 3.5 female SMA	015-0552-xx
Slip-on SMA connector	015-0553-xx
CSA8000B & TDS8000B Service Manual	071-0438-xx

Installation

The optical modules fit in the large slot in the front panel of a compatible instrument, such as a CSA8000B or TDS8000B. Figure 2 shows the front panel of a CSA8000B and the locations of the module compartments.

Figure 2: Module compartments

At least one module must be installed in the main instrument to acquire signals.

NOTE. Installing a large module, in either large compartment, disables the left-most small compartment (CH 1 and CH 2 for small modules).

The large compartments support single channel sampling modules, while the small compartments support single or dual channel sampling modules. Eight of the 10 inputs are usable at one time.

Electrostatic Discharge To prevent electrostatic damage to the main instrument and optical modules, follow the precautions described in this manual and the manuals accompanying your main instrument.

Circuitry in the optical module is very susceptible to damage from electrostatic discharge and from over drive signals. Be sure to only operate the optical module in a static-controlled environment (grounded conductive table top, wrist strap, floor mat, and ionized air blower). Be sure to discharge to ground any electrostatic charge that may be present on electrical cables before attaching the cable to the optical module recovered clock and data outputs.

CAUTION. The recovered clock and data outputs of the optical module are subject to damage from electrostatic discharge (ESD). To prevent damage from electrostatic discharge, store the optical module with the supplied SMA terminations installed. Store the module in a static-free container, such as the shipping container. Whenever you move the optical module from one instrument to another, use a static-free container to carry the optical module.

Always use a wrist strap (provided with your instrument) when handling an optical module or making connections. Discharge to ground any electrostatic charge that may be present on cables before attaching the cable to the optical-module outputs.

Module Installation To install a large module, first power off the instrument using the front-panel On/Standby power switch. Then place the module into a compartment and slowly push it in with firm pressure. Once the module is seated, turn the hold-down screws clockwise to lock the module into place. See Figure 3.

NOTE. To facilitate installation, turn the hold-down screws so that they are completely out (all the way counterclockwise), and then be sure to seat the module completely into its compartment. Doing so will help ensure the retaining ear on each screw rotates in to position as you tighten the screws.

CAUTION. To prevent damage to the optical module or instrument, never install or remove a module when the front-panel On/Standby power switch is ON (powered-on).

Once you have secured the module, you can turn on the instrument. See the main instrument user manual for information on powering on your instrument and checking its function.

NOTE. When removing a module, after turning the hold-down screws counterclockwise, use the module ejectors on the main instrument to eject the module.

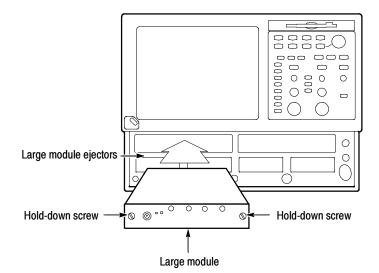


Figure 3: Installing a large module

Operating Basics

This section describes the front panel, connecting to the circuit under test, system interaction with the main instrument, and the programmer interface.

Usage

Handle your optical module carefully at all times.

CAUTION. To avoid damaging your optical module, take the following precautions:

Do not drop your module since damage and misalignment of the photodiode optical assembly can result. Store the module in a secure location when not in use.

Replace the protective cap on the input connector when the module is not in use.

To prevent loss of optical power or damage to the optical connectors, keep the connectors clean at all times. Also insure that all connectors and jumpers attached to the inputs are clean prior to insertion. See Cleaning Optical Connectors on page 17.

Connecting Optical
SignalsTake care to preserve the integrity of the connectors by keeping them free of
contamination. For cleaning information, see Cleaning Optical Connectors on
page 17.

The input of the 80C01, 80C02, 80C04, 80C05, 80C06, 80C09, and 80C10 modules (see note) can couple to single-mode optical fibers with a core diameter/cladding diameter of 9/125 μ m. The 80C03, 80C07, 80C08, and 80C08B modules can couple to any single-mode dimension or multimode dimension not exceeding a core diameter/cladding diameter of 62.5/125 μ m. Alternate types can be coupled by use of UCI (universal connector interface) series adapters. Refer to a current Tektronix catalog for details.

NOTE. The 80C10 has two separate optical inputs. The user must choose the correct one to use depending on 1310 nm or 1550 nm operation.

Attach the fiber optic cable with a suitable connector or a UCI Interface adapter to the optical input receptacle as follows:

- **1.** Firmly press the cable connector or adapter into the interface ferrule until it reaches the stop.
- 2. Rotate the cable connector or the adapter body until the anti-rotation pin engages.
- **3.** Firmly tighten the cable connector or the adapter shell. Tighten with finger pressure only.
- 4. To remove, unscrew the cable connector or adapter shell.

Attenuating Optical Signals

To keep the optical input power to an appropriate level, it may be necessary to attenuate the optical signal.

CAUTION. To avoid damaging the optical input of the module, attenuate to the Absolute Maximum Nondestructive Optical Input specifications. To maintain the levels within performance range and to avoid clipping, attenuate optical signals as indicated in the table below:

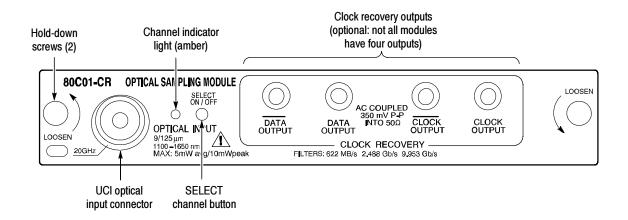
Module	Average	Peak
80C01	5 mW	10 mW
80C02	5 mW	10 mW
80C03	5 mW	10 mW
80C04	5 mW	10 mW
80C05	20 mW	60 mW
80C06	20 mW	60 mW
80C07	5 mW	10 mW
80C08	1 mW	10 mW
80C08B	1 mW	10 mW
80C09	5 mW	10 mW
80C10	20 mW	60 mW

NOTE. The 80C03 and 80C07 modules can have a somewhat deteriorated response for signals larger than 200 μW_{p-p} . The 80C08 modules also can have a somewhat deteriorated response for signals larger than 500 μW_{p-p} , and the vertical response will eventually saturate for levels approaching 1 m W_{p-p} .

NOTE. Optical sampling modules may have dynamic ranges exceeded without obvious visual indication onscreen because the photodetector and/or filters used may not necessarily pass through overloaded signals to the samplers at the front end.

System Interaction

Your optical module is a part of a larger instrument system. Most optical module functions are controlled automatically by the main instrument. These include such things as vertical scaling and horizontal sampling rate. You do not directly control these parameters; they are controlled for you as you perform tasks on the main instrument. The parameters that you control from the optical module front panel are explained in the *Front Panel Controls* section.


An additional optical module function that you control from the main instrument is external channel attenuation. External Attenuation lets you enter a number representing any external attenuation you have added to a channel.

Front Panel Controls

The optical module front panel is shown in Figure 4.

Channel Selection Each channel has a SELECT channel button and an amber channel light. The button operates as follows:

- If the amber channel light is on, the channel is acquiring a waveform.
- If you press the button and the channel is not currently being acquired (for any channel or math waveform), then the instrument activates (turns on) the channel.
- If you press the button and the channel is currently active as a channel waveform, then the instrument selects the channel waveform.
- If the channel waveform is already selected when you press the channel button, the instrument turns the channel off.

Figure 4: Optical module, 80C01-CR shown

Optical Input Connector	The optical input connector uses a universal connector interface (UCI) that allows use of many standard fiber-optic female connector styles. Some of the standard UCI interfaces supported are FC, ST, SC, and DIN. (Refer to a current Tektronix catalog for details.)	
Clock Recovery Outputs	Optional clock and data-recovery circuitry provides clock and data outputs; the recovered clock is internally routed to the main-instrument trigger circuit. The	

recovered clock is internally routed to the main-instrument trigger circuit. The circuitry also provides front-panel outputs: normal and complemented clock, and on some modules, normal and complemented data. See Table 9. Use 50 Ω terminations, provided with your optical module, on unused outputs.

Modules	Front Panel Outputs
80C01-CR	DATA, DATA, CLOCK, CLOCK
80C02-CR	DATA, CLOCK, 1/16 CLOCK
80C03-CR	CLOCK, CLOCK, DATA, DATA
80C04-CR1 80C04-CR2	DATA, CLOCK, 1/16 CLOCK CLOCK, 1/16 CLOCK
80C07-CR1	DATA, DATA, CLOCK, CLOCK
80C08-CR1 80C08B-CR1 80C08B-CR2	CLOCK, 1/16 CLOCK CLOCK, 1/16 CLOCK CLOCK, 1/16 CLOCK
80C09-CR1	CLOCK, 1/16 CLOCK

Table 9: Clock recovery outputs

You can disable the internal recovered clock from being used as the main instrument trigger by selecting external or internal triggering; select the recovered clock rate without actually selecting recovered clock as the trigger condition in order to activate the front-panel clock recovery signals.

Hold-Down Screws Hold-down screws secure the module to the main instrument. Once the holddown screws are loosened, use the eject levers to remove the module from a powered-down main instrument. Indicators on the hold-down screws point in the direction that the latch is pointing.

Commands From the Main-Instrument Front Panel

The Vertical Setup dialog box lets you toggle between the basic and optical module controls. The basic and optical controls are shown in Figure 5.

You first select the channel you want to set in the Waveform section of the dialog box. Then you select the Setup Wavelength, Filter, Bandwidth, or Compensate controls in the dialog box to change those settings or to initiate a compensation. Optical modules with the clock recovery option also have source and rate controls in the Trigger dialog box.

Detailed information on these dialog boxes can be found in the CSA8000B & TDS8000B User Manual and the CSA8000 and TDS8000 Online Help.

Setups ? 🗙	Setups ? 🗙
Mask TDR Disp Wfm Database Hist Cursor Meas Vert Horz Acq Trig Waveform Waveform On Define	Wfm Database Hist Cursor Meas Mask TDR Disp Vert Horz Acq Trig Waveform Image: Comparison of the second se
Setup Wavelength 1310	Scale 100.0mVdi 🗐 🚍
Signal Conditioning	Position 0.0div B+ Channel Offset 0.0V B+
Bandwidth	Offset 0.0V
Compensate	Units Auto External Attenuation 1.000 B C dB
Dark Level User Wavelength Gain	Linear
Basic >> Help	DC CAL 0.0 DT

Figure 5: System Vertical menu

Programmer Interface Commands

The remote programming commands for all sampling modules are documented in the *CSA8000 & TDS8000 Programmer Guide* accessed from the instrument Help menu.

User Adjustments

All optical module setups, parameters, and adjustments are controlled by the main instrument. To save, recall, or change any module settings, use the main-instrument menus or front-panel controls. Consult the *CSA8000B & TDS8000B User Manual* or the *CSA8000 and TDS8000 Online Help*.

Cleaning Optical Connectors

Small dust particles and oils can easily contaminate optical connectors and reduce or block the signal. Take care to preserve the integrity of the connectors by keeping them free of contamination.

CAUTION. To prevent loss of optical power or damage to the optical connectors, keep the connectors clean at all times.

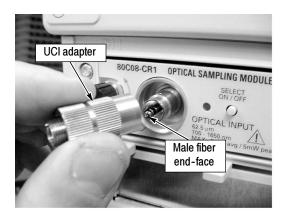
When cleaning the connectors with a swab, use gentle circular motions. Use only high quality cleaning supplies that are non-abrasive and leave no residue.

When possible, use the dry cleaning method on page 18.

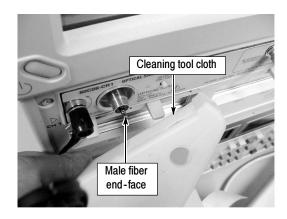
To reduce the need for cleaning, immediately replace protective caps on the optical connectors when not in use.

Use the following items to clean optical connectors:

- clean, dust-free compressed
- fiber cleaning cassette and/or tape dispenser cleaner
- pure, electronics-grade isopropyl alcohol (see Caution)


CAUTION. If possible, clean your connecting fiber (ferrule endface) with a dry cloth tape (cassetted or in a dispenser) cleaner. This is the preferred method, instead of the swabs and alcohol. Both ferrule endfaces can be cleaned in this way. If the alcohol method is used, it is recommended to follow that with the dry cleaning method outlined on page 18.

NOTE. Cleaning kits for optical connectors (such as the Tektronix Optical Connector Cleaner part number 006-8134-00) are available from a number of suppliers.


For safe and effective cleaning of the optical male end-face exposed after removal of the UCI adapter, Tektronix recommends the following method and tools:

Equipment required	One compressed air can, such as Tektronix part number 118-1068-01. One FIS cassette cleaner, such as FI-6270.
	One FIS tape dispenser cleaner, such as FI-7111.
Prerequisites	None

1. Remove the UCI adapter. This exposes the male fiber end-face fiber connector behind the UCI connector and allows access to it.

2. Advance the fiber cleaning cassette or tape-dispenser cleaner to expose an unused clean section of the lint free dry cleaning surface.

3. Lightly drag the clean, dry, surface of the cleaning tool cloth against the male end-face of the fiber input for a short distance (a centimeter or two).

4. Replace the UCI adapter back onto the cleaned fiber end-face.

- **5.** When the module does not have a fiber attached to its input(s) ensure the black dust-cap is in place to prevent airborne contaminates from lodging in the female optical input.
- **6.** Be sure to repeat a similar cleaning method to any male fiber end-face input fiber or device that will be attached to the input of the 80C0X UCI input.

	It is recommended that you use clean, dust-free compressed air to remove contaminates on the inside wall of the hollow female-to-female ferrule alignment tube inside the UCI adapter:	
	1. Remove the UCI adapter from the front panel of the instrument.	
	2. Use the compressed air to clean the female input of the adapter end-to-end.	
	NOTE . Do not blow compressed air into the female input of the UCI adapter when it is installed on the module.	
Optical Dark Level Compensation	The Vertical menu lets you access the optical module Dark Level and User Wavelength Gain Compensation procedures. This menu is shown in Figure 5 on page 16.	
	You first select the channel you want to calibrate in the Waveform section of the menu. Select the Setup Optical, Dark Level or User Wavelength Gain Compensa- tion boxes to start the compensation. Follow the displayed instructions to complete the compensation. For more information, consult the instrument online help.	
User Wavelength Gain Compensation	Execute a Compensation of the module as soon as the module has reached operation equilibrium (that is, after a 20 minute warm-up). Compensation for the entire system or for an individual optical module can be initiated from the Utilities menu Compensation command. For more information, see <i>Optimizing Measurement Accuracy</i> in the main instrument user manual. Compensation of the module also performs an optical dark level compensation	
	NOTE . The 80C10 has two separate optical inputs optimized for different wavelength regions (1310 nm or 1550 nm). Therefore, it supports two different user wavelength gain compensation calibrations, one for each input.	

Reference

This section describes how to select the optical module wavelength, how to enable clock recovery, and explains optical bandwidth.

Wavelength, Filter, and Bandwidth Selection

To select the optical wavelength, use the Vertical Setups menu. This menu is shown in Figure 5 on page 16.

First select the channel in the Waveform section of the menu. Then select the Wavelength that matches your system from the Setup Wavelength drop down box.

Use the Signal Conditioning boxes to select the filter and bandwidth appropriate for your optical standard:

Module	Wavelength selections	Filter	Bandwidth
80C01	1310 nm 1550 nm User	None (select a bandwidth) OC-12/STM-4 (622.08 Mb/s) OC-192/STM-64 (9.953 Gb/s) OC-48/STM-16 (2.48832 Gb/s)	20 GHz 12.5 GHz
80C02	1310 nm 1550 nm User	None (select a bandwidth) OC-192/STM-64 (9.953 Gb/s)	30 GHz 20 GHz 12.5 GHz
80C03	780 nm 850 nm 1310 nm 1550 nm User	None 2.50 Gb/s OC-48/STM-16 (2.488 Gb/s) FC1063 (1.0625 Gb/s) GbE (1.25 Gb/s)	2 GHz
80C04	1310 nm 1550 nm User	None (select a bandwidth) OC-192/STM-64 (9.953 Gb/s) FEC10.66 Gb/s	30 GHz 20 GHz
80C05	1550 nm User	None (select a bandwidth) OC-192/STM-64 (9.953 Gb/s)	40 GHz 30 GHz 20 GHz
80C06	1550 nm User	None	50 GHz
80C07	780 nm 850 nm 1310 nm 1550 nm User	None OC-3/STM-1 (155Mb/s) OC-12/STM-4 (622.08 Mb/s) OC-48/STM-16 (2.48832 Gb/s)	2 GHz

Table 10: Wavelength, Filter, and Bandwidth selections

Module	Wavelength selections	Filter	Bandwidth
80C08	780 nm 850 nm 1310 nm 1550 nm User	None 10GBASE-W (9.953 Gb/s) 10GBASE-R (10.31 Gb/s)	10 GHz
80C08B	780 nm 850 nm 1310 nm 1550 nm User	None 10GBASE-W (9.953 Gb/s) 10GBASE-R (10.31 Gb/s) OC-192/STM-64 (9.953 Gb/s) 10GFC (10.518 Gb/s)	10 GHz
80C09	1310 nm 1550 nm User	None (select a bandwidth) OC-192/STM-64 (9.953 Gb/s) FEC10.71 Gb/s	30 GHz 20 GHz
80C10	1310 nm 1550 nm User	None (select a bandwidth) OC-768/STM-256 (39.813 Gb/s) G.709 FEC (43.018 Gb/s)	30 GHz 65 GHz

Table 10: Wavelength, Filter, and Bandwidth selections

For more information, consult the CSA8000 and TDS8000 Online Help.

Clock Recovery

This section describes the clock recovery option.

DATA and DATA (recovered data). These outputs (DATA only on the 80C02 and 80C04-CR1) provide a 50 Ω , AC-coupled, ~ECL/2 level signal from the optical module data signal. These signals are digitally buffered and retimed to be synchronous with the serial recovered clock.

CLOCK and CLOCK (recovered clock). These outputs (CLOCK and 1/16 CLOCK on the 80C02-CR, 80C04-CR1, 80C04-CR2, 80C08-CR1, 80C08B-CR1, 80C08B-CR2, and 80C09-CR1) are clock signals synchronous with the incoming data signal. These clocks are only available with Option CR, CR1 or CR2. Only CLOCK and 1/16 CLOCK are available at the front panel for the 80C04-CR2, 80C08-CR1, 80C08B-CR1, 80C08B-CR2, and 80C09-CR1 modules.

NOTE. If clock and data recovery are enabled and no signal (or not the appropriate signal) is applied to the front panel, the recovered clock and data may free run.

NOTE. Table 14 on page 49 summarizes the clock recovery options for all modules.

NOTE. The recovered clock is simultaneously made available internally to the mainframe for use as the trigger; it is not necessary to attach a cable from the clock or 1/16 clock to the external trigger input. Simply select the recovered clock for triggering from the trigger menu.

Optical Bandwidth

Traditionally bandwidth is defined as the frequency at which the power out is one half the power out at a frequency near DC. In the voltage domain the power dissipated into a resistive load (such as a 50 ohm termination of a sampler) is the V_{RMS}^2/R where V_{RMS} is the RMS of the voltage swing seen at the resistive load, and R is the resistance value. A logarithmic scale using decibels is typically used to describe a system's frequency dependent response. A value expressed in terms of a decibel relative to a reference is defined as:

$$dB = 10 \log \left(\frac{value}{reference}\right)$$

For electrical bandwidths the reference of a system is commonly the response of the system to a sinusoidal frequency at or near DC. The point at which the system response (power is the common parameter that is referred to in many systems) is one half would therefore be:

$$dB = 10 \log \left(\frac{0.5}{response \ at \ DC}\right) = -3dB$$

In terms of frequency, voltage, and resistance the bandwidth is expressed as:

$$-3dB = 10 \log\left(\frac{V(f)^2}{R} \div \frac{V(DC)^2}{R}\right)$$

where V(f) is the RMS of the voltage swing response at the bandwidth frequency and V(DC) is the RMS voltage swing response at a frequency approaching DC. Further math yields V(f) = $0.707 \times V(DC)$.

The expression is simplified by cancelling the R and moving the squared term inside the log expression to a multiple outside the log expression:

$$10\log\left(\frac{V(f)^2}{R} \div \frac{V(DC)^2}{R}\right) = 2 \times 10\log\left(\frac{V(f)}{V(DC)}\right) = 20\log\left(\frac{V(f)}{V(DC)}\right)$$

In the CSA8000B and TDS8000B instruments, the vertical units displayed for an optical module are not in voltage, but watts; this is a unit of power. The optical-to-electrical converter inside the module outputs a voltage whose amplitude is linearly dependent on the incoming optical power; in this condition the voltage applied at the electrical sampler already represents optical power in its linear form (as opposed to having to square the voltage and divide by R). For the optical sampling modules then, the bandwidth where the displayed optical power is one half that approaching DC is:

$$dB = 10 \log \left(\frac{0.5}{response \ at \ DC} \right) = -3 dB$$

	The V(f) is the frequency at which the vertical swing is one half (0.5) the V(DC) not 0.707. The optical bandwidth therefore corresponds to the traditional electrical bandwidth of -6 dB. During testing of optical modules by impulse testing, the resulting impulse waveform is converted to frequency by Fourier transform and the bandwidth is defined as $-3 \text{ dB} = 10 \log(\text{vertical swing at frequency / vertical swing at DC})$. During reference receiver curve calculation, however, the definition is changed to match the industry standard definition which assumes electrical bandwidths are $-3 \text{ dB} = 20 \times \log(\text{vertical swing at frequency / vertical swing at DC})$.
Bandwidth for Unfiltered Frequency Settings	The curve calculation of frequency response for the unfiltered frequency settings (2.3 GHz, 12.5 GHz, 20 GHz, 30 GHz, 40 GHz, and 50 GHz) uses the definition for dB and bandwidth where $-3 \text{ dB} = 10 \log(\text{vertical swing at frequency / vertical swing at DC})$; that is, the optical bandwidth.
Bandwidth for Reference Receiver settings	The curve calculation of frequency response for reference receiver settings (FC, GbE, and OC/STM standards) uses the definition of dB and bandwidth that matches the industry standard which assumes electrical bandwidths where $-3 \text{ dB} = 20 \log (\text{vertical swing at frequency / vertical swing at DC}).$

Specifications

This section contains specifications for the 80C01, 80C02, 80C03, 80C04, 80C05, 80C06, 80C07, 80C08, 80C08B, 80C09, and 80C10 Optical Modules. All specifications are guaranteed unless noted as "typical." Typical specifications are provided for your convenience but are not guaranteed. Except for limits noted "typical," specifications that are marked with the \checkmark symbol are checked in the *Performance Verification* section of the service manual.

All specifications apply to the 80C01, 80C02, 80C03, 80C04, 80C05, 80C06, 80C07, 80C08, 80C08B, 80C09, and 80C10 Optical Modules unless noted otherwise. To meet specifications, three conditions must first be met:

- The instrument must have been calibrated/adjusted at an ambient temperature between +20° C and +30° C.
- The instrument must have been operating continuously for 20 minutes within the operating temperature range specified.
- The instrument must be in an environment with temperature, altitude, humidity, and vibration within the operating limits described in these specifications

NOTE. "Sampling Interface" refers to both the electrical sampling module interface and the optical module interface, unless otherwise specified.

Name	Characteristics
80C01	Long wavelength 1100 nm - 1650 nm. Unamplified O/E converter with two user selectable optical bandwidths: 12.5 GHz, > 20 GHz, or three user selectable reference receiver responses: OC-12/STM-4 for 622.08 Mb/s SONET/SDH standards, OC-48/STM-16 for 2.488 Gb/s SONET/SDH standards, and OC-192/STM-64 for 9.953 Gb/s SONET/SDH standards.
80C02	Long wavelength 1100 nm - 1650 nm. Unamplified O/E converter with three user selectable optical bandwidths: 12.5 GHz 20 GHz, 30 GHz, or one user selectable reference receiver response: OC-192/STM-64 for 9.953 Gb/s Sonet/SDH standards.

 Table 11: Optical modules - Descriptions

Name	Characteristics		
80C03	Broad wavelength 700 nm - 1650 nm. Amplified O/E converter with optical bandwidth of 2.5 GHz. The 2.5 Gb/s, OC-48/STM-16, and 2.0 GHz modes all use a physical path that has OC48/STM-16 reference receiver type response. Two other selectable reference receiver responses: FC1063 for the 1.0625 Gb/s fibre channel standard and GBE for the 1.25 Gb/s gigabit ethernet standard.		
80C04	Long wavelength 1100 nm - 1650 nm unamplified. Unamplified O/E converter with two user selectable optical bandwidths: 20 GHz, 30 GHz, or two user selectable reference receiver responses: OC-192/STM-64 for 9.953 Gb/s Sonet/SDH standards 10.664 Gb/s ITU-T Recommendation G.975 standard		
80C05	Long wavelength 1520 - 1580 nm unamplified. Three user-selectable optical bandwidths: 20 GHz 30 GHz 40 GHz, or one reference receiver response: OC-192/STM-64 for 9.953 Gb/s Sonet/SDH standards		
80C06	Long wavelength 1520 - 1580 nm. O/E converter unamplified, 55 GHz optical sampler accepts high power optical signals typical for RZ signaling. Particularly well-suited for 40 Gb/s RZ telecom applications, as well as general purpose optical component testing.		
80C07	Broad wavelength 700 nm - 1650 nm. Amplified O/E converter with optical bandwidth of 2.5 GHz. The OC-48/STM-16 and 2.0 GHz modes all use a physical path that has OC48/STM-16 reference receiver type response. Two other selectable reference receiver responses: OC-3/STM-1 OC-12/STM-4		
80C08	Broad wavelength 700nm-1650nm. Amplified O/E converter with maximum optical bandwidth (in combination with the internal electrical sampler) of 10 GHz. There are two Data Rate Receiver setups selectable: 10GBASE-W for 9.95328 Gb/s 10GBASE-R for 10.3125 Gb/s		
80C08B	Broad wavelength 700nm-1650nm. Amplified O/E converter with maximum optical bandwidth (in combination with the internal electrical sampler) of 9.5 GHz. There are four Data Rate Receiver setups selectable: 10GBASE-W for 9.95328 Gb/s 10Gb/s Ethernet standard 10GBASE-R for 10.3125 Gb/s 10Gb/s Ethernet FEC standard OC-192/STM-64 for 9.953 Gb/s Sonet/SDH standards 10GFC for 10.51875 Gb/s 10Gb/s FibreChannel standard		

Table 11: Optical modules - Descriptions (Cont.)

Name	Characteristics			
80C09	Long wavelength 1100 nm - 1650 nm. Unamplified O/E converter with two user selectable optical bandwidths: 20 GHz, 30 GHz, or two user selectable reference receiver responses: OC-192/STM-64 for 9.953 Gb/s Sonet/SDH standards 10.709 Gb/s ITU-T Recommendation G.709 standard			
80C10	Long wavelength 1310 nm and 1550 nm. Unamplified O/E converter with two user selectable optical bandwidths: 30 GHz, 65 GHz, or two user selectable reference receiver responses: OC-768/STM-256 for 39.813 Gb/s Sonet/SDH standards 43.018 Gb/s ITU-T Recommendation G.709 standard			

Table 11: Optical modules - Descriptions (Cont.)

Table 12: Optical modules - Acquisition

Name	Characteristics		
Number of input channels	1 optical		
Internal fiber	Module	Characteristics	
diameter ¹	80C01	9 μm/125 μm single mode	
	80C02	9 μm/125 μm single mode	
	80C03, 80C07, 80C08, and 80C08B	62.5 μm (Corning 62.5/125 CPC6 specs) multimode (compatible with single-mode fiber) cladding: 125 μm, buffer: 900 μm	
Internal fiber	80C04	9 μm/125 μm single mode	
diameter ¹	80C05	9 $\mu\text{m}/\text{125}~\mu\text{m}$ single mode	
	80C06	9 $\mu\text{m}/\text{125}~\mu\text{m}$ single mode	
	80C09	9 $\mu\text{m}/\text{125}~\mu\text{m}$ single mode	
	80C10	9 $\mu\text{m}/\text{125}~\mu\text{m}$ single mode	
Fiber connector	Rifocs UCI (universal connector interface) male connector		
Optical return loss	Module	Loss	
	80C01, 80C02, 80C04, 80C05, 80C06, 80C09, and 80C10	> 30 dB for single-mode fiber	
	80C03, 80C07, 80C08, and 80C08B	> 14 dB for multimode fiber> 24 dB for single-mode fiber	

Name	Characteristics			
Absolute maximum nondestructive optical input ²	80C01, 80C02, 80C03, 80C04, 80C07, and 80C09	5 mW average power; 10 mW peak power at wavelength with highest relative responsivity.		
	80C05 and 80C10	20 mW average power; 60 mW power at wavelength with highest relative responsivity.		
	80C06	20 mW average power; 60 mW power at wavelength with highest relative responsivity.		
	80C08 and 80C08B	1 mW average power; 10 mW peak power at wavelength with highest relative responsivity.		
Maximum operating ranges11	80C01, 80C02, 80C04, and 80C09	0 to10 mW displayed limits, not including offset.		
	80C03 and 80C07	0 to1 mW displayed limits, not including offset.		
	80C05	0 to 30 mW displayed limits, not including offset. However, signal limit is 10mW average optical power, 20 mW displayed peak power at wavelength with highest relative responsivity.		
	80C06	0 to 60 mW displayed limits, inclusive of offset, which may be coerced to above 4mW/div to ensure this is attained, and respecting that the signal limit is 15mW average optical power, 30mW displayed peak power at wavelength with highest relative responsivity.		
	80C08 and 80C08B	0 to 2 mW displayed limits, not including offset.		
	80C10	0 to 30 mW displayed limits, not including offset.		
Effective wavelength	Module	Range		
range ³ , typical	80C01, 80C02, 80C04, and 80C09	1100 nm to 1650 nm		
	80C03, 80C07, 80C08, and 80C08B	700 nm to 1650 nm		
	80C05, 80C06	1520 nm to 1580 nm		
	80C10	1550 nm: 1520 nm to 1580 nm 1310 nm: 1290 nm to 1330 nm		

Table 12: Optical modules - Acquisition (Cont.)

Name	Characteristics			
Calibrated	Module	Range		
wavelengths	80C01, 80C02, 80C04, 80C09, and 80C010	1550 nm and 1310 nm \pm 20 nm		
	80C03, 80C07, 80C08, and 80C08B	1550 nm, 1310 nm, 850 nm, and 780 nm (all \pm 20 nm)		
	80C05 and 80C06	1550 nm \pm 20 nm		
Dark level	80C01: OC-12/STM-4, OC-48/STM-16, OC192/STM-64, 12.5 GHz settings: 20 GHz settings:	$<$ 10 $\mu W~\pm$ 2% (vertical offset) $<$ 10 $\mu W~\pm$ 4% (vertical offset)		
		$<$ 10 $\mu W~\pm$ 2% (vertical offset) s: $<$ 10 $\mu W~\pm$ 4% (vertical offset)		
	80C03 and 80C07: All settings:	<500 nW \pm 2% (vertical offset)		
		$<$ 10 $\mu W~\pm$ 2% (vertical offset) s: $<$ 10 $\mu W~\pm$ 4% (vertical offset)		
	80C05: OC192/STM-64 20 GHz, 30 GHz, 40 GH	$<$ 10 $\mu W~\pm$ 2% (vertical offset) Hz: $<$ 30 $\mu W~\pm$ 4% (vertical offset)		
	80C06: 50 GHz	$<$ 25 $\mu W~\pm$ 4% (vertical offset)		
	80C08 and 80C08B: All settings:	$<$ 1.0 $\mu W~\pm$ 2% (vertical offset)		
		$<$ 10 $\mu W~\pm$ 2% (vertical offset) s: $<$ 10 $\mu W~\pm$ 4% (vertical offset)		
	80C10: 65 GHz 1550 nm 1310 nm	\pm [25 μ W +0.04* Vertical Offset \pm [35 μ W +0.04* Vertical Offset		
		a dark level compensation, keep the same as during the compensation, anges more than 1° C, perform		

Table 12: Optical modules - Acquisition (Cont.)

Name	Characteristics			
Main-instrument display vertical scale factors	Module 80C01, 8 80C04, a	0C02, nd 80C09:	Maximum 1 mW per division	Minimum 10 μW per division
	80C03 ar 80C07:	nd	100 μW per division	1 μW per division
	80C05:		3 mW per division	30 μW per division
	80C06:		6 mW per division	60 μW per division
	80C08 ar 80C08B:	nd	200 μW per division	2 μW per division
	80C10:		3 mW per division	30 μW per division
	Full scale vertical on the display of the main instrument is 10 divisions. Maximum full scale and minimum full scale are therefore 10 times the values listed above. Vertical scale is adjustable in a 1-2-5 sequence. Between those settings, the scale can be adjusted in smaller increments.			
Vertical offset range	80C01:	\pm 8 mW offset relative to center of waveform display (5 divisions from either top or bottom of waveform display)		
	80C02:	±6 mW offset relative to center of waveform display (5 divisions from either top or bottom of waveform display)		
	80C03:	\pm 1 mW offset relative to center of waveform display (5 divisions from either top or bottom of waveform display)		
	80C04:		ffset relative to center of from either top or both	of waveform display tom of waveform display)
	80C05, 80C10:		offset relative to center from either top or both	r of waveform display tom of waveform display)
	80C06:	\pm 40 mW offset relative to center of waveform display (5 divisions from either top or bottom of waveform display) (typical)		
	80C07:		ffset relative to center of from either top or both	of waveform display tom of waveform display)
	80C08, 80C08B:		ffset relative to center of from either top or both	of waveform display tom of waveform display)
	80C09:		ffset relative to center of from either top or both	of waveform display tom of waveform display)

Table 12: Optical modules - Acquisition (Cont.)

Name	Characteristics
DC vertical accuracy4,	80C01:
typical	OC-192/STM-64, 10GFC, 10GBASE-W, 10GBASE-R, and
1	10 GHz:
	$\pm 25 \mu\text{W} \pm 2\%$ of [(vertical value) - (vertical offset)]
	80C02:
	12.5 GHz, OC-192/STM-64:
	$\pm 25 \ \mu\text{W} \pm 2\%$ of [(vertical value) - (vertical offset)]
	20 GHz setting:
	$\pm 25 \mu\text{W} \pm 4\%$ of [(vertical value) - (vertical offset)]
	30 GHz setting:
	$\pm 25 \ \mu\text{W} \pm 6\%$ of [(vertical value) - (vertical offset)]
	80C03, all settings:
	$\pm 25 \mu\text{W} \pm 2\%$ of [(vertical value) - (vertical offset)]
	10.66 Gb/s and OC-192/STM-64:
	$\pm 25 \mu\text{W} \pm 2\%$ of [(vertical value) - (vertical offset)]
	20 GHz setting:
	$\pm 25 \mu\text{W} \pm 4\%$ of [(vertical value) - (vertical offset)]
	30 GHz setting:
	$\pm 25 \ \mu\text{W} \pm 6\%$ of [(vertical value) - (vertical offset)]
	OC-192/STM-64:
	$\pm 25 \mu\text{W} \pm 2\%$ of [(vertical value) - (vertical offset)]
	20 GHz setting:
	$\pm 25 \mu\text{W} \pm 4\%$ of [(vertical value) - (vertical offset)]
	30 GHz setting:
	$\pm 25 \ \mu\text{W} \pm 6\%$ of [(vertical value) - (vertical offset)]
	40 GHz setting:
	$\pm 25 \mu\text{W} \pm 8\%$ of [(vertical value) - (vertical offset)]
	50 GHz setting:
	\pm 120 μ W \pm 6% of [(vertical value) - (vertical offset)]
	80C07, 80C08, and 80C08B all settings:
	$\pm 25 \mu\text{W} \pm 2\%$ of [(vertical value) - (vertical offset)]
	10.71 Gb/s, OC-192/STM-64:
	$\pm 25 \mu W \pm 2\%$ of [(vertical value) - (vertical offset)]
	20 GHz setting:
	$\pm 25 \mu\text{W} \pm 4\%$ of [(vertical value) - (vertical offset)]
	30 GHz setting:
	$\pm 25 \mu\text{W} \pm 6\%$ of [(vertical value) - (vertical offset)]
	30 GHz setting:
	$\pm 25 \mu\text{W} \pm 4\%$ of [(vertical value) - (vertical offset)]
	39 Gb/s, OC-768/STM-256 and 43 Gb/s (G.709), FEC43.02 Gb/
	$\pm 25 \mu\text{W} \pm 6\%$ of [(vertical value) - (vertical offset)]
	65 GHz setting:
	$\pm 25 \mu\text{W} \pm 8\%$ of [(vertical value) - (vertical offset)]

Table 12: Optical modules - Acquisition (Cont.)

Name	Characteristics
DC vertical difference	80C01:
accuracy ⁴ , typical	12.5 GHz, OC-192/STM-64, OC-48/STM-16, OC-12/STM-4
The accuracy of the	settings:
difference between	\pm 2% of [difference reading]
two cursors in the	20 GHz setting:
vertical scale of the	\pm 4% of [difference reading]
same channel.	80C02:
	12.5 GHz, OC-192/STM-64: \pm 2% of [difference reading]
	20 GHz setting:
	\pm 4% of [difference reading]
	30 GHz setting:
	$\pm 6\%$ of [difference reading]
	80C03 and 80C07, all settings:
	$\pm 2\%$ of [difference reading]
	80C04:
	10.66 Gb/s and OC-192/STM-64:
	\pm 2% of [difference reading]
	20 GHz setting:
	\pm 4% of [difference reading]
	30 GHz setting: \pm 6% of [difference reading]
	80C05:
	OC-192/STM-64:
	$\pm 2\%$ of [difference reading]
	20 GHz setting:
	$\pm 4\%$ of [difference reading]
	30 GHz setting:
	$\pm 6\%$ of [difference reading]
	40 GHz setting:
	\pm 8% of [difference reading]
	80C06, 80C08, and 80C08B all settings:
	\pm 2% of [difference reading] 80C09:
	10.71 Gb/s, OC-192/STM-64,
	$\pm 2\%$ of [difference reading]
	20 GHz:
	\pm 4% of [difference reading]
	30 GHz setting:
	$\pm 6\%$ of [difference reading]]
	80C10:
	30 GHz setting:
	\pm 4% of [difference reading]
	39 Gb/s , OC-768/STM-256, 43 Gb/s, FEC43.02 setting:
	\pm 6% of [difference reading]
	65 GHz setting:
	\pm 8% of [difference reading]

Table 12: Optical modules - Acquisition (Cont.)

Name	Characteristics		
Offset capabilities	Open loop. User assigned, fixed offset value is applied to channel.		
Minimum optical bandwidth ⁵	80C01 module, 20 GHz setting 12.5 GHz setting	> 20 GHz > 12.5 GHz	
	80C02 module, 30 GHz setting80C02-CR,30 GHz setting80C02 and 80C02-CR,30 GHz setting80C02,20 GHz setting80C02,20 GHz setting80C02 CR,12.5 GHz setting	> 30 GHz, typical ⁷ > 29 GHz, typical ⁷ > 28 GHz ⁷ > 20 GHz > 12.5 GHz	
	80C03 module, 2.5 GHz setting	> 2.3 GHz, typical	
	80C04 module, 30 GHz setting 80C04-CR1 & 80C04-CR2 30 GHz setting	> 30 GHz, typical ⁷ > 29 GHz, typical ⁷	
	80C04, 80C04-CR1 & 80C04-CR2 30 GHz setting 80C04 20 GHz setting	> 28 GHz ⁷ > 20 GHz	
	80C05 module 20 GHz 30 GHz 40 GHz	> 20 GHz > 30 GHz > 40 GHz, typical	
	80C06 module 55 GHz ⁶	> 55 GHz, typical	
	80C07 module, 2.5 GHz setting	> 2.3 GHz, typical	
	80C08 module, 10 GHz setting	> 10 GHz, typical > 9 GHz	
	80C08B module, 10 GHz setting	> 10 GHz, typical > 9.5 GHz	
	80C09 module, 30 GHz setting 80C09 CR1, 30 GHz setting 80C09 & 80C09-CR1,	> 30 GHz, typical ⁷ > 29 GHz, typical ⁷	
	30 GHz setting80C0920 GHz setting	> 28 GHz ⁷ > 20 GHz	
	80C10 module, 30 GHz setting 65 GHz setting	> 30 GHz > 65 GHz	

Table 12: Optical modules - Acquisition (Cont.)

Name	Characteristics		
Rise time, typical	80C01 module		
For peak optical	OC-12/STM-4 setting:	750 ps \pm 50 ps	
signal input which	OC-48/STM-16 setting:	187 ps \pm 15 ps	
creates <2 mW _{pp} modulation depth.	OC-192/STM-64 setting:	47 ps \pm 10 ps	
modulation depth.	12.5 GHz setting:	<40 ps	
	20 GHz setting:	<25 ps	
	80C02 module		
	30 GHz setting:	< 16 ps	
	20 GHz setting:	<25 ps	
	12.5 GHz setting:	<40 ps	
	OC-192/STM-64 setting:	47 ps \pm 10 ps	
	80C04 module		
	30 GHz setting:	<16 ps	
	20 GHz setting:	<25 ps	
	10.66 Gb/s setting:	44 ps \pm 10 ps	
	OC-192/STM-64 setting:	47 ps \pm 10 ps	
	80C05 module		
	40 GHz setting:	< 12 ps	
	30 GHz setting:	<16 ps	
	20 GHz setting:	<25 ps	
	OC-192/STM-64 setting:	47 ps \pm 10 ps	
	80C06 module		
	50 GHz setting:	<9.6 ps	
	80C09 module		
	30 GHz setting:	<16 ps	
	20 GHz setting:	<25 ps	
	10.71 Gb/s setting:	44 ps \pm 10 ps	
	OC-192/STM-64 setting:	47 ps \pm 10 ps	
	80C10 module		
	65 GHz setting:	7.4 ps	
	30 GHz setting:	16 ps	
	OC-768/STM-256 setting:	12 ps	
	G.709 43 Gb/s setting:	11.2 ps	

Table 12: Optical modules - Acquisition (Cont.)

Name	Characteristics		
Rise time, typical	80C03 module		
For peak optical	FC1063 setting:		440 ps \pm 35 ps
signal input which	GBE setting:		373 ps \pm 30 ps
creates $< 200 \ \mu W_{pp}$	OC-48/S	TM-16 setting:	187 ps \pm 15 ps
modulation depth.	80C07 m	nodule	
	OC-3 set	tting:	$3.0 \text{ ns} \pm 170 \text{ ps}$
	OC-12 s	etting:	750 ps \pm 50 ps
	OC-48 s	etting:	187 ps \pm 15 ps
Rise time, typical	80C08 m	nodule	
For peak optical signal input which	10GBAS 10GBAS		53 ps \pm 10 ps 53 ps \pm 10 ps
creates $<$ 500 μ W _{pp} modulation depth.	80C08B module		
	OC-192/STM-64 setting:		47 ps ± 10 ps
	10GFC: 10GBASE-W:		46 ps \pm 10 ps 47 ps \pm 10 ps
	10GBASE-R:		46 ps \pm 10 ps
	10 GHz:		< 50 ps
Time domain vertical response aberrations,	80C01	OC-12/STM-4 setting: OC-48/STM-16 setting:	<5% <5%
typical		OC-192/STM-64 setting:	< 10%
For peak optical		12.5 GHz setting: 20 GHz setting:	< 10% < 15%
signal input	80C02	OC-192/STM-64 setting:	<10%
< 5 mW _{p-p} except for 80C03 and 80C07	00002	12.5 GHz setting:	< 15%
which creates		20 GHz setting:	< 20%
200 μW_{pp} modulation	80C03	30 GHz setting: All settings: < 5%	<30%
depth.	80C04	OC-192/STM-64 setting:	<10%
	00004	10.66 Gb/s setting:	<10% <10%
		20 GHz setting:	<20%
		30 GHz setting:	< 30%
	80C07	-	(typical)
	80C09	OC-192/STM-64 setting:	< 10%
		10.71 Gb/s setting: 20 GHz setting:	< 10% < 20%
		30 GHz setting:	< 30%

Table 12:	Optical	modules -	Acquisition	(Cont.)
-----------	---------	-----------	-------------	---------

Name	Charact	eristics	
Time domain vertical response aberrations, typical	80C05	OC-192/STM-64 setting: 20 GHz setting: 30 GHz setting: 40 GHz setting	<5% <10% <10% <15%
For peak optical signal input < 10 mW _{p-p} .	80C06	50 GHz:	<5% (typical) <10% (maximum)
Time domain vertical response aberrations, typical	80C08	All settings:	<10% (typical)
For peak optical signal input < 500 μW _{p-p} .			
Time domain vertical response aberrations, typical	80C08B	All settings:	<10% (typical)
For peak optical signal input < 2 mW _{p-p} .			
Time domain verti- cal response aberra-	80C10	OC-768/STM-256 setting:	<5% (maximum) <3% (typical)
tions, typical		FEC43.02 Gb/s setting:	< 5% (maximum) < 3% (typical)
For peak optical signal input		30 GHz setting:	< 5% (maximum) < 3% (typical)
<20 mW _{p-p} .		65 GHz setting	< 10% (maximum) < 5% (typical)

Table 12: Optical modules - Acquisition (Cont.)

Name	Characteristics				
Vertical equivalent	80C01 module	Maximum RMS ⁹	Typical RMS ⁹		
optical noise (maxi- mum and typical) ⁸	OC-12/STM-4 setting:	$<$ 12 μ W _{rms}	$<$ 8 μ W _{rms}		
inani ana (jpical)	OC-48/STM-16 setting:	$<$ 12 μ W _{rms}	$<$ 8 μ W _{rms}		
	OC-192/STM-64 setting:	$<$ 12 μ W _{rms}	$<$ 8 μ W _{rms}		
	12.5 GHz setting:	$<$ 12 μ W _{rms}	$<$ 8 μ W _{rms}		
	20 GHz setting:	$<$ 25 μ W _{rms}	$<$ 15 μ W _{rms}		
	80C01-CR module	Maximum RMS ⁹	Typical RMS ⁹		
	OC-12/STM-4 setting:	$<$ 15 μ W _{rms}	$<$ 10 μW_{rms}		
	OC-48/STM-16 setting:	$<$ 15 μ W _{rms}	$<$ 10 μ W _{rms}		
	OC-192/STM-64 setting:	$<$ 15 μ W _{rms}	$<$ 10 μ W _{rms}		
	12.5 GHz setting:	$<$ 15 μ W _{rms}	$<$ 10 μ W _{rms}		
	20 GHz setting:	$<$ 25 μ W _{rms}	$<$ 15 μ W _{rms}		
	80C02 module	Maximum RMS ⁹	Typical RMS ⁹		
	OC-192/STM-64 setting:	$<$ 10 μ W _{rms}	$<$ 6 μ W _{rms}		
	12.5 GHz setting:	$<$ 10 μ W _{rms}	$<$ 6 μ W _{rms}		
	20 GHz setting:	$<$ 15 μ W _{rms}	$<$ 10 μ W _{rms}		
	30 GHz setting:	$<$ 30 μ W _{rms} ⁷	$<$ 20 μ W _{rms}		
	80C02-CR module	Maximum RMS ⁹	Typical RMS ⁹		
	OC-192/STM-64 setting:	$<$ 12 μ W _{rms}	$<$ 7 μ W _{rms}		
	12.5 GHz setting:	$<$ 12 μ W _{rms}	$<$ 7 μ W _{rms}		
	20 GHz setting:	$<$ 20 μ W _{rms}	$<$ 15 μ W _{rms}		
	30 GHz setting:	$<$ 40 μ W _{rms} ⁷	$<$ 30 μ W _{rms}		
	80C03 & 80C03-CR modul	les Maximum RMS ⁹	Typical RMS ⁹		
	FC1063 setting:	$<$ 1 μ W _{rms}	$<$ 0.75 μ W _{rms}		
	GBE setting:	$<$ 1 μ W _{rms}	$<$ 0.75 μ W _{rms}		
	OC-48/STM-16 setting:	$<$ 1.5 μ W _{rms}	$<$ 1 μ W _{rms}		
	80C04 module	Maximum RMS ⁹	Typical RMS ⁹		
	OC-192/STM-64 setting:	$<$ 10 μ W _{rms}	$<$ 6 μ W _{rms}		
	FEC 10.66 Gb/s setting:	$<$ 10 μ W _{rms}	$<$ 6 μ W _{rms}		
	20 GHz setting:	$<$ 15 μ W _{rms}	$<$ 10 μ W _{rms}		
	30 GHz setting:	$<$ 30 μ W _{rms} ⁷	$<$ 20 μ W _{rms}		
	80C04-CR1 and 80C04-CF modules	R2 Maximum RMS ⁹	Typical RMS ⁹		
	OC-192/STM-64 setting:	$<$ 12 μ W _{rms}	<7 μW _{rms}		

Table 12: Optical modules - Acquisition (Cont.)

Name	Characteristics		
Vertical equivalent	20 GHz setting:	$<$ 20 μ W _{rms}	$<$ 15 μ W _{rms}
optical noise (maxi- mum and typical) ⁸	30 GHz setting:	$<$ 40 μ W _{rms} ⁷	$<$ 30 μ W _{rms}
mum and typical)	80C05 module	Maximum RMS	Typical RMS
	OC-192/STM-64 setting:	$<$ 15 μ W _{rms}	$<$ 10 μ W _{rms}
	20 GHz setting:	$<$ 25 μ W _{rms}	$<$ 15 μ W _{rms}
	30 GHz setting:	$<$ 35 μ W _{rms}	$<$ 25 μ W _{rms}
	40 GHz setting:	$<$ 70 μ W _{rms} ⁷	$<$ 50 μ W _{rms}
	80C06 module	Maximum RMS	Typical RMS
	50 GHz setting (typical):	$<$ 192 μ W _{rms}	$<$ 150 μ W _{rms}
	80C07 module	Maximum RMS	Typical RMS
	OC-3/STM-1 setting:	$<$ 1 μ W _{rms}	$<$.50 μ W _{rms}
	OC-12/STM-4 setting:	<1 μW _{rms}	<.50 μW _{rms}
	OC-48/STM-16 setting:	$<$ 1.5 μ W _{rms}	$<$.70 μ W _{rms}
	80C08 and 80C08B modul (no clock recovery)	es Maximum RMS ⁹	Typical RMS ⁹
	All settings:	$<$ 5 μ W _{rms}	$<$ 2.5 μ W _{rms}
	80C08-CR1, 80C08B-CR1 (clock recovery)	and 80C08B-CR2 m Maximum RMS ⁹	odules Typical RMS ⁹
	All settings:	<5.5 μW _{rms}	<3.0 μW _{rms}

Table 12: Optical modules - Acquisition (Cont.)

Name	Characteristics		
Vertical equivalent	80C09 module	Maximum RMS ⁹	Typical RMS ⁹
optical noise (maxi- mum and typical) ⁸	OC-192/STM-64 setting:	$<$ 10 μ W _{rms}	$<$ 6 μ W _{rms}
mum and typical)	FEC 10.71 Gb/s setting:	$<$ 10 μ W _{rms}	$<$ 6 μ W _{rms}
	20 GHz setting:	$<$ 20 μ W _{rms}	$<$ 15 μ W _{rms}
	30 GHz setting:	$<$ 30 μ W _{rms} ⁷	$<$ 20 μ W _{rms}
	80C06 module	Maximum RMS	Typical RMS
	50 GHz setting (typical):	$<$ 192 μ W _{rms}	$<$ 150 μ W _{rms}
	80C09-CR1 and 80C09-CR2 modules	Maximum RMS ⁹	Typical RMS ⁹
	OC-192/STM-64 setting:	$<$ 10 μ W _{rms}	$<$ 7 μ W _{rms}
	FEC 10.71 Gb/s setting:	$<$ 10 μ W _{rms}	$<$ 7 μ W _{rms}
	20 GHz setting:	$<$ 20 μ W _{rms}	$<$ 15 μ W _{rms}
	30 GHz setting:	$<$ 30 μ W _{rms} ⁷	$<$ 30 μ W _{rms}
	80C10 module (no clock recovery)	Typ/Max 1550 nm	Typ/Max 1310 nm
	OC-768/STM-256 setting:	$<$ 60/75 μ W _{rms}	$<$ 110/136 μ W _{rms}
	43.02 Gb/s FEC setting:	$<$ 60/75 μW_{rms}	$<$ 110/136 μ W _{rms}
	30 GHz setting:	$<$ 45/60 μ W _{rms}	$<$ 82/110 μ W _{rms}
	65 GHz setting:	<100/150 μW _{rms}	<182/273 μW _{rms}

Table 12: Optical modules - Acquisition (Cont.)

Name	Characteris	Characteristics					
✓ OC-3/STM-1 155 Mb/s Reference Receiver setting	In the 155.52 Mb/s NRZ setting, the scalar frequency response is verified to fall within fourth-order Bessel-Thompson reference receiver boundary limits.						
frequency response ⁷		The OC-3/STM-1 nominal scalar frequency response matches the ITU 155.52 Reference Receiver Nominal curve with the following tolerance:					
	(MHz)		(dB)				
	Frequency	Lower	Nominal	Upper			
	0.000	-0.50	0.00	0.50			
	23.33	-0.61	-0.11	0.39			
	46.65	-0.95	-0.45	0.05			
	69.98	-1.52	-1.02	-0.52			
	93.30	-2.36	-1.86	-1.36			
	116.7	-3.50	-3.00	-2.50			
	140.0	-5.67	-4.51	-3.35			
	155.5	-7.25	-5.71	-4.17			
	163.3	-8.08	-6.37	-4.66			
	186.6	-10.74	-8.54	-6.35			
	209.9 233.3	-13.55 -16.41	-10.93 -13.41	-8.31 -10.41			
✓ OC-12/STM-4 622 Mb/s Reference Receiver setting frequency response ⁷	In the 622.08 Mb/s NRZ setting, the scalar frequency response is verified to fall within fourth-order Bessel-Thompson reference receiver boundary limits. The OC-12/STM-4 nominal scalar frequency response matches the ITU 622.08 Reference Receiver Nominal curve with the following tolerance:						
	(MHz)		(dB)				
	Frequency	Lower	Nominal	Upper			
	0.000	-0.50	0.00	0.50			
	93.3	-0.61	-0.11	0.39			
	186.6	-0.95	-0.45	0.05			
	279.9	-1.52	-1.02	-0.52			
	373.2	-2.36	-1.86	-1.36			
	466.7	-3.50	-3.00	-2.50			
	559.9	-5.67	-4.51	-3.35			
	622.1	-7.25	-5.71	-4.17			
	653.2	-8.08	-6.37	-4.66			
	746.5	-10.74	-8.54	-6.35			
	839.8 933.1	-13.55 -16.41	-10.93 -13.41	-8.31 -10.4			
	333. I	-10.41	-13.41	-10.4			

 Table 12: Optical modules - Acquisition (Cont.)

Name	Characteristics					
CC48/STM-16 2.488 Gb/s Reference Receiver setting frequency response ⁷		Scalar frequency response falls within Industry Standard, Bessel- Thompson reference receiver boundary limits.				
	SONET OC-48/STM-16 frequency response boundary limits are described in ITU-T G.957 Tables I.1 and I.2. For convenience, the scalar frequency response of the output amplitude (for sinusoidal swept optical input) has been interpreted from the Bessel-Thompson transfer function and listed below:					
	(MHz)		(dB)			
	Frequency	Lower	Nominal	Upper		
	0.000	-0.50	0.00	0.50		
	373.3	-0.61	-0.11	0.39		
	746.5	-0.95	-0.45	0.05		
	1119.7	-1.52	-1.02	-0.52		
	1493.1	-2.36	-1.86	-1.36		
	1866.3	-3.50	-3.00	-2.50		
	2239.5	-5.67	-4.51	-3.35		
	2488.3	-7.25	-5.71	-4.17		
	2612.8	-8.08	-6.37	-4.66		
	2986.0	-10.74	-8.54	-6.35		
	3359.3	-13.55	-10.93	-8.31		
	3732.6	-16.41	-13.41	-10.41		

 Table 12: Optical modules - Acquisition (Cont.)

Name	Characteris	tics		
OC192/STM-64 9.953 Gb/s Reference	Scalar frequency response falls within Industry Standard, Bessel- Thompson reference receiver boundary limits.			
Receiver setting fre- quency response ⁷	Tektronix manufactures and tests the 80C01, 80C02, 80C04, 80C05, 80C08 ¹⁰ , and 80C09 optical modules using 10 Gb reference receivers to have a new superior and tighter tolerance OC192/STM-64 Reference Receiver response. ITU experts recently agreed on the minimum performance specifications for 10 Gbit/s (STM-64/OC-192) optical reference receivers (San Antonio ITU Study Group 15 February 2000). These specifications are used to establish system interoperability and test conformance of optical interfaces to draft ITU-T Recommendation G.691 which is scheduled to be completed in April 200 (see ITU table A.1/G.691 from the WD 16-48 document from Study Group 15 dated February 2000). For convenience, the scalar frequency response of the output amplitude (for sinusoidal swept optical input) has been interpreted from the published Bessel-Thompson transfer function and listed below:			
	(MHz)		(dB)	
	Frequency	Lower	Nominal	Upper
	0.000	-0.85	0.00	0.85
	1493.2 2986.0	-0.96 -1.30	-0.11 -0.45	0.74
		-1.30 -1.87	-0.45 -1.02	0.40 0.17
	4478.8 5972.4	-1.87 -2.71	-1.02	-1.01
	7465.0	-3.86	-3.00	-2.16
	8958.0	-6.19	-4.51	-2.83
	9953.28 10451.2	-7.87 -8.75	-5.71 -6.37	-3.55 -3.99
	10451.2	-8.75 -11.53	-8.54	-5.56
	13437.2	-11.55	-0.54 -10.93	-7.41
	14930.4	-14.45	-13.41	-9.41
	14300.4	-1/.41	-10.41	-3.41

Table 12: Optical modules - Acquisition (Cont.)

Name	Characteris	tics				
✓ OC768/STM-256 39.813 Gb/s Refer- ence Receiver setting frequency response ⁷	testing and t .75x(data rat is a discrete	Bessel-Thompson Scalar Frequency Response curve for margin testing and tolerance at various frequencies; based on +/- 1.00 DC to .75x(data rate) and +/-5.0dB at 1.5x(data rate). NOTE: the table below is a discrete list of some specific values that are commonly listed in ITU standards; this curve and tolerances are actually continuous function.				
	(GHz) Frequency 0 5.97 11.94 17.92 23.89 29.86 35.83 39.81 41.80 47.78 53.75 50.70	Lower -1.00 -1.10 -1.45 -2.02 -2.86 -4.00 -6.56 -8.37 -9.31 -12.26 -15.32	(dB) Nominal 0 -0.10 -0.45 -1.02 -1.86 -3.00 -4.51 -5.71 -6.37 -8.54 -10.93	Upper 1.00 0.90 0.55 -0.02 -0.86 -2.00 -2.46 -3.05 -3.43 -4.83 -6.53 -0.41		
✓ 10GFC Reference Receiver setting fre- quency response ⁷	For convenie amplitude (fo the publishe Reference R	59.72-18.41-13.41-8.41For convenience, the scalar frequency response of the output amplitude (for sinusoidal swept optical input) has been interpreted from the published Bessel-Thompson transfer function for 10.51875 Gb/s Reference Receivers and then listed below:				
	(MHz) Frequency 0 1578.0 3155.6 4733.3 6311.7 7889.1 9466.9 10518.8 11045.0 12622.6 14200.6 15778.6	Lower -0.85 -0.96 -1.30 -1.87 -2.71 -3.86 -6.71 -8.70 -9.72 -12.88 -16.14 -19.41	(dB) Nominal 0 -0.11 -0.45 -1.02 -1.86 -3.00 -4.51 -5.71 -6.37 -8.54 -10.93 -13.41	Upper 0.85 0.74 0.40 -0.17 -1.01 -2.16 -2.83 -3.55 -3.99 -5.56 -7.41 -9.41		

Table 12: Optical modules - Acquisition (Cont.)

Name	e Characteristics				
✓ 10GBASE-W Reference Receiver setting frequency response ⁷	For convenience, the scalar frequency response of the output amplitude (for sinusoidal swept optical input) has been interpreted from the published Bessel-Thompson transfer function for 10.00000 Gb/s reference receivers (as specified for the 9.95328 Gb/s rate of the 10GBASE-W) and listed below:				
	(MHz) Frequency 0 1500 3000 4500 6000 7500 9000 10000 10500 12000 13500 15000	Lower -0.85 -0.96 -1.30 -1.87 -2.71 -3.86 -6.19 -7.87 -8.75 -11.53 -14.45 -17.41	(dB) Nominal 0.00 -0.11 -0.45 -1.02 -1.86 -3.00 -4.51 -5.71 -6.37 -8.54 -10.93 -13.41	Upper 0.85 0.74 0.40 0.17 -1.01 -2.16 -2.83 -3.55 -3.99 -5.56 -7.41 -9.41	
10GBASE-R Ref- erence Receiver set- ting frequency re- sponse ⁷	For convenience, the scalar frequency response of the output amplitude (for sinusoidal swept optical input) has been interpreted from the published Bessel-Thompson transfer function for 10.00000 Gb/s reference receivers (as specified for the 10.3125 Gb/s rate of the 10GBASE-R) and listed below:				
	(MHz) Frequency 0 1500 3000 4500 6000 7500 9000 10000 10500 12000 13500 15000	Lower -0.85 -0.96 -1.30 -1.87 -2.71 -3.86 -6.19 -7.87 -8.75 -11.53 -14.45 -17.41	(dB) Nominal 0.00 -0.11 -0.45 -1.02 -1.86 -3.00 -4.51 -5.71 -6.37 -8.54 -10.93 -13.41	Upper 0.85 0.74 0.40 0.17 -1.01 -2.16 -2.83 -3.55 -3.99 -5.56 -7.41 -9.41	

Table 12: Optical modules - Acquisition (Cont.)

Name	Characteris	tics		
✓ FEC 10.66 Gb/s Reference Receiver setting frequency response ⁷	9.95328 Gb/ the tolerance by the ratio o 9.953 Gb/s r 0.75*9.95320	s rate with the f curves and no of (10.664 Gb/s eference receiv 8GHz = 7.465G	ollowing changes: minal -3dB break)/(9.95328 Gb/s); 1 er has a nominal Hz. This 10.66Gb	
	amplitude (fo the published scaled as de	or sinusoidal sw d Bessel-Thom	pson transfer funct and then listed be	has been interpreted fron tion, the frequencies
	(MHz)	1	(dB)	Userse
	Frequency	Lower	Nominal	Upper
	0	-0.85	0	0.85
	1599.8	-0.96	-0.11	0.74
	3199.2 4798.6	-1.30 -1.87	-0.45 -1.02	0.40 -0.17
	6398.9	-1.07 -2.71	-1.86	-1.01
	7998.0	-3.86	-3.00	-2.16
	9597.7	-6.19	-4.51	-2.83
	10664.0	-7.87	-5.71	-3.55
	11197.5	-8.75	-6.37	-3.99
	12796.9	-11.53	-8.54	-5.56
	14396.7	-14.45	-10.93	-7.41
	15996.5	-17.41	-13.41	-9.41

Table 12: Optical modules - Acquisition (Cont.)

Characteris	tics			
This Reference Receiver is essentially identical to that for the OC192 9.95328 Gb/s rate with the following changes: the frequency scale for the tolerance curves and nominal -3dB breakpoints are scaled linearly by the ratio of (10.709 Gb/s)/(9.95328 Gb/s); for example: the 9.953 Gb/s reference receiver has a nominal -3dB response at 0.75*9.95328GHz = 7.465GHz. This 10.71 Gb reference receiver has a nominal -3dB response at (10.709/9.95328) x 7.465GHz = 8.032GHz. For convenience, the scalar frequency response of the output amplitude (for sinusoidal swept optical input) has been interpreted from the published Bessel-Thompson transfer function, the frequencies scaled as described above, and then listed below:				
(MHz) Frequency 0 1606.6 3212.8 4819.0 6426.0 8032.0 9638.4 10709.2 11245.0 12851.1 14457.7 16064.4	Lower -0.85 -0.96 -1.30 -1.87 -2.71 -3.86 -6.19 -7.87 -8.75 -11.53 -14.45 -17.41	(dB) Nominal 0 -0.11 -0.45 -1.02 -1.86 -3.00 -4.51 -5.71 -6.37 -8.54 -10.93 -13.41	Upper 0.85 0.74 0.40 -0.17 -1.01 -2.16 -2.83 -3.55 -3.99 -5.56 -7.41 -9.41	
The forward error correction method defined in ITU-T standard G.709 creates an additional overhead upon a standard OC768 (STM256) 40 Gb/s data stream in which the data rate is effectively increased by ratio of 255/236. Table 7-1 in G.709 standard lists this explicit serial data rate on the physical layer.(GHz)(dB) Frequency 0-1.0001.00 6.45 -1.10-0.100.90 12.90 -1.45-0.450.55 19.36 -2.02-1.02-0.02 25.81 -2.86-1.86-0.86 32.26 -4.00-3.00-2.00 38.71 -6.56-4.51-2.46 43.02 -8.37-5.71-3.05 45.17 -9.31-6.37-3.43 51.63 -12.26-8.54-4.83				
	This Referer 9.95328 Gb/ the tolerance by the ratio of 9.953 Gb/s r 0.75*9.95322 nominal -3d For convenie amplitude (fd the publishe scaled as def (MHz) Frequency 0 1606.6 3212.8 4819.0 6426.0 8032.0 9638.4 10709.2 11245.0 12851.1 14457.7 16064.4 The forward creates an a 40 Gb/s data ratio of 255/2 data rate on (GHz) Frequency 0 6.45 12.90 19.36 25.81 32.26 38.71 43.02 45.17	9.95328 Gb/s rate with the fithe tolerance curves and not by the ratio of (10.709 Gb/s) 9.953 Gb/s reference receiv 0.75*9.95328GHz = 7.465G nominal -3dB response at (For convenience, the scalar amplitude (for sinusoidal swithe published Bessel-Thompscaled as described above, (MHz) Frequency Lower 0 -0.85 1606.6 -0.96 3212.8 -1.30 4819.0 -1.87 6426.0 -2.71 8032.0 -3.86 9638.4 -6.19 10709.2 -7.87 11245.0 -8.75 12851.1 -11.53 14457.7 -14.45 16064.4 -17.41 The forward error correction creates an additional overher 40 Gb/s data stream in which ratio of 255/236. Table 7-1 data rate on the physical lay (GHz) Frequency Lower 0 -1.00 6.45 -1.10 12.90 -1.45 19.36 -2.02 25.81 -2.86 32.26	This Reference Receiver is essentially identic: 9.95328 Gb/s rate with the following changes: the tolerance curves and nominal -3dB break by the ratio of (10.709 Gb/s)/(9.95328 Gb/s); f 9.953 Gb/s reference receiver has a nominal - 0.75*9.95328GHz = 7.465GHz. This 10.71 Gb nominal -3dB response at (10.709/9.95328) x For convenience, the scalar frequency respon amplitude (for sinusoidal swept optical input) b the published Bessel-Thompson transfer funct scaled as described above, and then listed be (MHz) (dB) Frequency Lower Nominal 0 0 -0.85 0 6426.0 -2.71 -1.86 8032.0 -3.86 -3.00 9638.4 9638.4 -6.19 -4.51 10709.2 10709.2 -7.87 -5.71 11245.0 11245.0 -8.75 -6.37 12851.1 1245.1 -11.53 10709.2 -7.87 -5.71 11245.0 1245.1 -10.93 16064.4 -	

Table 12: Optical modules - Acquisition (Cont.)

Name	Characteris	tics		
✓ 2.50 Gb/s (2X GBE) Reference	Scalar frequency response falls within Industry Standard, Bessel- Thompson reference receiver boundary limits.			
Receiver setting frequency response ⁷	scaling all fre 38.6.5 (this s nience, the s sinusoidal sv	equency values section refers to scalar frequency vept optical inpu	by 2X as describe ITU G.957 for tole	
	(MHz) Frequency 0.000 375 750 1125 1500 1875 2250 2500 2625 3000 3375 3750 5000	Lower -0.50 -0.61 -0.95 -1.52 -2.36 -3.50 -5.67 -7.25 -8.08 -10.74 -13.55 -16.41 -26.11	(dB) Nominal 0.00 -0.11 -0.45 -1.02 -1.86 -3.00 -4.51 -5.71 -6.37 -8.54 -10.93 -13.41 -21.45	upper 0.50 0.39 0.05 -0.52 -1.36 -2.50 -3.35 -4.17 -4.66 -6.35 -8.31 -10.41 -16.78
GBE (1.25 Gb/s) Reference Receiver setting frequency response ⁷	Scalar freque Thompson re 1.250 Gb/s f 802.3z sectie For convenie amplitude (fe	ency response f eference receive requency respo on 38.6.5 (this s ence, the scalar or sinusoidal sw	alls within Industry er boundary limits. nse boundary limit section refers to IT frequency respons	y Standard, Bessel- is are described in IEEE U G.957 for tolerances). se of the output has been interpreted from
	(MHz) Frequency 0.000 187.5 375 562.5 750 937.5 1125 1250 1312.5 1500 1687.5 1875 2500	Lower -0.50 -0.61 -0.95 -1.52 -2.36 -3.50 -5.67 -7.25 -8.08 -10.74 -13.55 -16.41 -26.11	(dB) Nominal 0.00 -0.11 -0.45 -1.02 -1.86 -3.00 -4.51 -5.71 -6.37 -8.54 -10.93 -13.41 -21.45	Upper 0.50 0.39 0.05 -0.52 -1.36 -2.50 -3.35 -4.17 -4.66 -6.35 -8.31 -10.41 -16.78

Table 12: O	ptical modules	- Aca	uisition	(Cont.)	
		- AVY	aloition	001111	

Name	Characteris	Characteristics		
 ✓ FC1063 (1.0625 Gb/s) Reference Receiver setting frequency response⁷ 	Scalar frequency response falls within Industry Standard, Bessel- Thompson reference receiver boundary limits. Fiber Channel frequency response boundary limits are described in ANSI FC-PC. For convenience, the scalar frequency response of the output amplitude (for sinusoidal swept optical input) has been interpreted from the Bessel-Thompson transfer function and listed below:			
	(MHz)		(dB)	
	Frequency	Lower	Nominal	Upper
	0.000	-0.50	0.00	0.50
	159.5	-0.61	-0.11	0.39
	318.9	-0.95	-0.45	0.05
	478.4	-1.52	-1.02	-0.52
	637.9	-2.36	-1.86	-1.36
	797.4	-3.50	-3.00	-2.50
	956.8	-5.67	-4.51	-3.35
	1063	-7.25	-5.71	-4.17
	1116	-8.08	-6.37	-4.66
	1275	-10.74	-8.54	-6.35
	1435	-13.55	-10.93	-8.31
	1595	-16.41	-13.41	-10.41
	2126	-26.11	-21.45	-16.78

Table 12: Optical modules - Acquisition (Cont.)

¹ Single-mode fiber (Corning SMF-28 specs).

- ² The optical input powers below nondestructive levels may exceed saturation and compression limits of the module.
- ³ The optical wavelengths that the product accepts and still provides a reasonable (25% of peak optimum) wavelength conversion gain.
- ⁴ Vertical accuracy specifications are referenced to an internal optical power meter reading for a given optical input, and limited to a temperature range within $\pm 5^{\circ}$ C of previous channel compensation and an ambient temperature within 20° C to 35° C.
- ⁵ Optical bandwidth is the frequency at which the responsivity of the optical to electrical conversion process is reduced by 50% (6 dB).
- ⁶ Optical bandwidth of the 50 GHz module is defined as (0.48/risetime).
- ⁷ This specification is limited to the instrument operating in an ambient temperature between +20° C and +30° C. Nominal freq response is specified for optical input signals of modulation magnitude such that $2mW_{pp}$ (200 u W_{pp} for 80C03 and 80C07; 500 u W_{pp} for 80C08) or less signal is applied at the sampler input.
- ⁸ The optical channel noise with no optical noise input (Dark Level).
- ⁹ Clock recovery versions reduce the power reaching the vertical channel (splitter to clock recovery produces loss). Therefore, the non-clock recovery modules more closely exhibit the typical noise performance.
- ¹⁰ The factory calibration and verification of these tolerances are performed in a stable ambient environment of +25° C +/- 2° C. The module is specified to perform within these tolerances over an operating temperature range of +20° C and +30° C.
- ¹¹ Certain performance characteristics such as reference receiver and filter settings may have more restricted power levels in order to maintain guaranteed performance.

Table 13: Optical Power Meter

Name	Characteristics		
Optical power meter range	80C01, 80C02, 80C03, 80C04, 80C07, and 80C09: +4 dBm to -30 dBm, typical		
	80C05 and 80C10: +13 dBm to -21 dBm, typical		
	80C06: +13 dBm to -21 dBm, typical		
	80C08 and 80C08B: +0 dBm to -30 dBm, typical		

Table 14: Optical modules - Clock recovery options (CR, CR1, and CR2)

Name	Characteristics			
Effective wavelength range (clock recovery path)	Module	Range		
	80C01	1270 nm to 1600 nm		
	80C02	1270 nm to 1600 nm		
	80C03, 80C07, and 80C08, and 80C08B	700 nm to 1650 nm		
Effective wavelength range (clock recovery path)	80C04 and 80C09	1270 nm to 1600 nm		

Name	Characteristics	
Operating data rates ⁵	80C01-CR:	622.08 Mb/s ±1000 ppm (OC-12/STM-4) 2.48832 Gb/s ±1000 ppm (OC-48/STM-16)
	80C02-CR:	9.95328 Gb/s \pm 1000 ppm (OC-192/STM-64)
	80C03-CR:	1.0625 Gb/s \pm 1000 ppm (FC1063) 1.2500 Gb/s \pm 1000 ppm (GBE) 2.48832 Gb/s \pm 1000 ppm (OC-48/STM-16) 2.5000 Gb/s \pm 1000 ppm (2X GBE)
	80C04-CR1:	9.95328 Gb/s \pm 1000 ppm (OC-192/STM-64)
	80C04-CR2:	9.95328 Gb/s \pm 1000 ppm (OC-192/STM-64) 10.664 Gb/s \pm 1000 ppm (OC-192 FEC)
	80C07-CR1:	155.52 Mb/s \pm 1000 ppm (OC-3/STM-1) 622.08 Mb/s \pm 1000 ppm (OC-12/STM-4) 2488.32 Mb/s \pm 1000 ppm (OC-48/STM-16)
	80C08-CR1:	9.95328 Gb/s \pm 1000 ppm (10GBASE-W) 10.3125 Gb/s \pm 1000 ppm (10GBASE-R)
	80C08B-CR1:	9.95328 Gb/s \pm 1000 ppm (10GBASE-W) 10.3125 Gb/s \pm 1000 ppm (10GBASE-R)
	80C08B-CR2:	10.3125 Gb/s \pm 1000 ppm (10GBASE-R) 10.51875 Gb/s \pm 1000 ppm (10GFC)
	80C09-CR1:	9.95328 Gb/s \pm 1000 ppm (OC-192/STM-64) 10.709 Gb/s \pm 1000 ppm (FEC)
	stream must be of data sequence cor multi-consecutive in a consecutive ro meet the data seq clock recovery fun 80C02-CR and 80	and 80C04-CR1 modules, the incoming data non-return-to-zero format (NRZ) and must have a ntent which provides both isolated 1s and mark sequences (that is 2,3,4 and so forth logical 1s ow). NOTE: a fixed pattern of 10101010 does not uence content:. The 80C02-CR and 80C04-CR1 ctions may not properly lock to such a pattern. The 0C04-CR1 will, however, typically lock to a ern (this is equivalent to a 2.48832 GHz optical

Table 14: Optical modules - Clock recovery options (CR, CR1, and CR2) (Cont.)

Name	Character	stics		
Optical sensitivity	Module M	laximum	Minimum	
range, clock recovery	80C01 +	5.0 dBm (3.16 mW), typica	I -10.0 dBm (100 μW), typical	
(optical input power) ¹	80C02 +	7 dBm (5.0 mW), typical	-10.0 dBm (100 μW), typical	
			-7.5 dBm, warranted	
	80C03 -	4.0 dBm (400 μW), warrant		
			warranted	
	80C04 +	7 dBm (5.0 mW), typical	-10.0 dBm (100 μW), typical	
			-7.5 dBm, warranted	
	80C07 -	-4.0 dBm (400 μW), warranted -16.0 dBm (25 μW),		
			warranted	
		0.0 dBm (1.0 mW, all	-13.0 dBm (50 μW, 1310 nm,	
	v	vavelengths), warranted	1550 nm), warranted	
			-15.0 dBm (32 μW, 1310 nm,	
			1550 nm), typical	
			-12.0 dBm (64 μW, 780 nm,	
			850 nm), typical	
		0.0 dBm (1.0 mW, all	-13.0 dBm (50 μW, 1310 nm	
	v	vavelengths), warranted	1550 nm), warranted	
			-15.0 dBm (32 μW, 1310 nm	
			1550 nm), typical	
			-12.0 dBm (64 μW, 780 nm,	
			850 nm), typical	
	80C09 +	7 dBm (5.0 mW), typical	-10.0 dBm (100 μW), typical	
			-7.5 dBm, warranted	
Clock and data	80C01:		> 300 mV _{pp,} typical	
electrical output	80C02:	Serial DATA output:	> 700 mV _{pp,} typical	
amplitudes ²		Serial CLOCK output:	1.5 V _{pp,} typical	
		1/16th CLOCK output:	600 mV _{pp,} typical	
	80C03:	Serial DATA output:	> 350 mV _{pp,} typical	
		Serial CLOCK output:	> 350 mV _{pp} , typical	
	80C04-CR	•	>700 mV _{pp} , typical	
		Serial CLOCK output:	1.5 V _{pp,} typical	
		1/16th CLOCK output:	600 mV _{pp,} typical	
	80C04-CR		1.5 V _{pp,} typical	
		1/16th CLOCK output:	600 mV _{pp,} typical	
	80C07:	Serial CLOCK output:	450 mV _{pp,} typical	
		Serial DATA output:	450 mV _{pp,} typical	
	80C08:	Serial CLOCK output:	1.0 V _{pp,} typical	
	000000	1/16th CLOCK output:	600 mV _{pp,} typical	
	80C08B:	Serial CLOCK output:	1.0 V _{pp,} typical	
		1/16th CLOCK output:	600 mV _{pp,} typical	
	80C09:	Serial CLOCK output:	1.5 V _{pp,} typical	
		1/16th CLOCK output:	600 mV _{pp,} typical	

Table 14: Optical modules - Clock recovery options (CR, CR1, and CR2) (Cont.)

Characte	eristics	
80C01:	Serial DATA output:	< 30 ps
	Serial CLOCK output:	< 30 ps
80C02:		<30 ps
		< 30 ps
		< 300 ps
80C03:		< 30 ps
		< 30 ps
80C04:		< 30 ps
	•	< 30 ps
	•	< 300 ps
80C04-C		22
		< 30 ps
00007.		< 300 ps
80007:		< 30 ps
00000		< 30 ps
80008:		< 30 ps
00000D		< 300 ps
80C08B:		< 30 ps
00000		< 300 ps
80009:		< 30 ps
		< 300 ps
80C04-C	R2, 80C08, 80C08B, 80C09: 4 MHz maximum	
80C09:	3.5 MHz typical	
80C01:	<8.0 ps RMS maximum <4.0 ps RMS typical	
80C02:	<2.0 ps RMS maximum <1.0 ps RMS typical ⁶	
80C03:	< 8.0 ps RMS maximum < 4.0 ps RMS typical	
80C04:	<2.0 ps RMS maximum <1.0 ps RMS typical ⁶	
OC-3 set	ttina	
	< 32.0 ps RMS maximum	
0C-12 s		
	-	
OC-48 s	1 21	
	0	
80008		
00000.		
80C08B:		
	< 1.0 ps RMS typical ⁶	
80C09:	<2.0 ps RMS maximum <1.0 ps RMS typical ⁶	
	80C01: 80C02: 80C03: 80C04: 80C04-C 80C07: 80C08: 80C08: 80C09: 80C09: 80C09: 80C02: 80C02: 80C02: 80C02: 80C03: 8	Serial CLOCK output: 80C02: Serial DATA output: Serial CLOCK output: 80C03: Serial DATA output: Serial CLOCK output: 80C04: Serial DATA output: Serial CLOCK output: 1/16th CLOCK output: 80C04-CR2: Serial CLOCK output: 80C07: Serial DATA output: Serial CLOCK output: 80C08: Serial CLOCK output: 80C08: Serial CLOCK output: 80C08: Serial CLOCK output: 1/16th CLOCK output: 80C09: Serial CLOCK output: 80C09: 3.5 MHz typical 80C01: <8.0 ps RMS maximum <1.0 ps RMS typical 80C02: <2.0 ps RMS maximum <1.0 ps RMS typical 80C03: <8.0 ps RMS maximum <1.0 ps RMS typical 80C04: <2.0 ps RMS maximum <1.0 ps RMS typical 80C07: <32.0 ps RMS maximum <1.0 ps RMS typical 80C07: <8.0 ps RMS maximum <1.0 ps RMS typical 80C08: <2.0 ps RMS maximum <1.0 ps RMS typical 80C08: <2.0 ps RMS maximum <1.0 ps RMS typical 80C08: <2.0 ps RMS maximum <1.0 ps RMS typical 80C09: <2.0 ps RM

Table 14: Optical modules - Clock recovery options (CR, CR1, and CR2) (Cont.)

	Table 14: Optical modules	 Clock recovery optio 	ons (CR, CR1, and CR2) (Cont.)
--	---------------------------	--	--------------------------------

Na	Name Characteristics				
	Optical power meter accuracy, typical 5% of reading + connector uncertainty for either 780 nm (80C03 80C07, and 80C08), 850 nm (80C03, 80C07, and 80C08), 1310 nm, 1550 nm \pm 20 nm, typical				
1	¹ These powers are the average optical input coupled into the external Optical Sampling Module optical input connector. The range is defined for recovered clock, a 50% duty cycle of the incoming NRZ data (also referred to as 50% mark density), a PRBS pattern of 2^{23-1} , and an extinction ratio of ≥ 8.2 dB (at eye center).				
2	Output is 50 Ω AC coupled: specification is for output amplitude at the bulkhead outputs and does not include RF loss of attached cables.				
3	The clock jitter is applicable to both the external electrical output and the system jitter experienced when the recovered clock is the source of the waveform trigger for the system.				
4	Jitter performance of the system while using the optical module clock recovery as the trigger source is warranted only while no active signal is applied to the main instrument's External Trigger (or Prescaler) input.				
5	The acceptable signal types and patterns for the specified modules are:			re:	
	Module NRZ RZ 1010				1010

Module	NRZ	RZ	1010
80C02-CR and 80C04-CR1	Y	Ν	N
80C03-CR and 80C07-CR	Y	Ν	Y
80C04-CR2, 80C08-CR1, 80C08B-CR1, 80C08B-CR2, and 80C09-CR1	Y	Y	Y

⁶ Internal use for trigger results in a total system jitter of

 $\geq \sqrt{\text{sum of squares}}$

therefore the displayed waveform may normally exhibit something like SQRT(mainframe_jitter)^2 + (OCR_jitter)^2).

Name	Characteristics		
Construction material	Chassis parts constructed of aluminum alloy; front panel constructed of plastic laminate; circuit boards constructed of glass-laminate. Cabinet is aluminum.		
Weight	80C01: 1.13 kg (2.5 lbs) 80C01-CR: 1.34 kg (2.95 lbs) 80C02: 0.95 kg (2.1 lbs) 80C03: 1.12 kg (2.70 lbs) 80C03-CR: 1.22 kg (2.70 lbs) 80C04-CR1: 1.34 kg (2.95 lbs) 80C04-CR1: 1.22 kg (2.70 lbs) 80C04-CR1: 1.22 kg (2.70 lbs) 80C04-CR2: 1.22 kg (2.70 lbs) 80C05: 0.95 kg (2.1 lbs) 80C06: 0.95 kg (2.1 lbs) 80C07: 1.13 kg (2.5 lbs) 80C07: 1.13 kg (2.5 lbs) 80C07: 1.13 kg (2.5 lbs) 80C08: .95 kg (2.1 lbs) 80C09: .95 kg (2.1 lbs) 80C09: .95 kg (2.1 lbs) 8		
Overall dimensions	Height: 25.6 mm (1.0 in) Width: 166.7 mm (6.5 in)		
	Depth: 307.7 mm (12.0 in)		

 Table 15: Optical modules - Mechanical

Name	Characteristics
Temperature	Installed and operating:
	+10° C to +40° C
	Reference receivers frequency response tolerances, 30 GHz mode, and Optical power meter accuracy:
	+20° C to +30° C
	Installed and non-operating:
	-22° C to +60° C
Humidity	Installed and operating:
	20% to 80% relative humidity with a maximum wet bulb temperature o 29° C at or below +40° C, (upper limit derates to 45% relative humidit at +40° C) non-condensing.
	Reference receivers frequency response tolerances:
	+20° C to +30° C
	Optical power meter accuracy:
	+20° C (80% RH) to +30° C (80% RH)
	Installed and non-operating:
	5% to 90% relative humidity with a maximum wet bulb temperature of 29° C at or below +60° C, (upper limit derates to 20% relative humidit at +60° C) non-condensing.
Altitude: installed	Operating: 3,048 m (10,000 feet).
	Non-operating: 12,190 m (40,000 feet)

Table 16: Optical modules - Environmental

Specifications

Glossary

Accuracy

The closeness of the indicated value to the true value.

Analog-to-Digital Converter

A device that converts an analog signal to a digital signal.

Attenuation

A decrease in magnitude (for optical systems this is usually optical power) of a signal.

Autoset

A means of letting the instrument set itself to provide a stable and meaningful display of a given waveform.

Bandwidth

The difference between the limiting frequencies of a continuous frequency spectrum. Bandwidth is the frequency at which the power out is one half the power out at a frequency near DC. The range of frequencies handled by a device or system. Bandwidth is a measure of network capacity. Analog bandwidth is measured in cycles per second. Digital bandwidth is measured in bits of information per second. See *Optical Bandwidth* on page 23.

Channel

A place to connect a signal or attach a network or transmission line to sampling heads. Also, the smallest component of a math expression. A transmission path between two or more stations.

Channel Number

The number assigned to a specific signal input connector. The top channel of the left-most sampling head compartment of the instrument mainframe is always mainframe channel 1, regardless of any repositioning or omission of sampling heads.

Clock

A signal that provides a timing reference.

Common Mode

A circumstance where a signal is induced in phase on both sides of a differential network.

dB

Decibel: a method of expressing power or voltage ratios. The decibel scale is logarithmic. It is often used to express the efficiency of power distribution systems when the ratio consists of the energy put into the system divided by the energy delivered (or in some cases, lost) by the system. One milliwatt of optical power is usually the optical reference for 0 dBm. The formula for decibels is:

$$dB = 20 \log\left(\frac{Vi}{Vl}\right)$$
 for optical, $dB = 10 \log\left(\frac{Po}{Pi}\right)$

where V_i is the voltage of the incident pulse, V_l is the voltage reflected back by the load, P_o is the power out, P_i is the power in, and log is the decimalbased logarithmic function. See *Optical Bandwidth* on page 23.

dBm

A logarithmic measure of power referenced to 1 milliwatt (1 mW optical power = 0.0 dBm):

$$dBm = 10 \log\left(\frac{optical \ power}{1 \ mW}\right)$$

Degradation

A deterioration in a signal or system.

Differential Mode

A method of signal transmission where the true signal and its logical compliment are transmitted over a pair of conductors.

Digital signal

A signal made up of a series of on and off pulses.

FEC: Forward Error Correction

Additional bits and/or coding added to a data stream to allow for automatic error detection and correction at the receiving end. These extra bits and/or coding tend to increase a serial data rate above the original non-FEC data stream in order to accommodate the extra information added by the FEC.

Digital transmission system

A transmission system where information is transmitted in a series of on and off pulses.

Fiber Optics

A method of transmitting information in which light is modulated and transmitted over high-purity, filaments of glass. The bandwidth of fiber optic cable is much greater than that of copper wire.

Impedance

The opposition to an AC signal in the wire. It's very much like resistance to a DC signal in a DC circuit. Impedance is made up of resistance and inductive and capacitive reactance.

Initialize

Setting the instrument main instrument to a completely known, default condition.

Internal Clock

An internally generated trigger source that is synchronized with the Internal Clock Output signal.

Mode

A stable condition of oscillation in a laser. A laser can operate in one mode (single mode) or in many modes (multimode).

Modulation

A process whereby a signal is transformed from its original form into a signal that is more suitable for transmission over the medium between the transmitter and the receiver.

Multimode Cable

A thick cored optical fiber (compared to single mode cable) that can propagate light of multiple modes.

Protocol

Formal conventions that govern the format and control of signals in a communication process.

Recovered Clock

A clock signal derived from and synchronous with a received data sequence.

Setting

The state of the front panel and system at a given time.

Single-Mode Cable

An optical cable with a very small core diameter (usually in the range of 2-10 microns). Such cables are normally used only with laser sources due to their very small acceptance cone. Since the cone diameter approaches the wavelength of the source, only a single mode is propagated.

Trigger

An electrical event that initiates acquisition of a waveform as specified by the time base.

Waveform

The visible representation of an input signal or combination of signals.

Glossary

Index

A

Accessories, 6 available options list, 6 optional, 7 standard, 7 Accuracy, 29, 30, 55 Address, Tektronix, vii Analog-to-Digital converter, 55 Application software version, requirement vs. module model, 1 Attenuating optical signals, 12 Attenuation, 55 Autoset, 55

B

Bandwidth, 31, 55 Optical, description, 21 selection, 19

С

Channel, 62 number, 62 selection, 13 Cleaning optical connectors, 17 CLOCK, 22 Clock, 62 recovery, 22, 50 recovery outputs, 14 Common mode, 62 Compensation, 20 Connecting optical signals, 11 Contacting Tektronix, vii

D

DATA, 22 Data rates, 50 dB, 63 dBm, 63 Decibel, 63 Degradation, 63 Differential mode, 63 Digital signal, 63 Digital transmission system, 63

E

Electrostatic discharge, 9 Environment, 55

F

Features, 1 FEC, 63 Fiber optics, 63 Filter selection, 21 Forward Error Correction, 63 Front panel controls, 13

G

Getting started, 1

Η

Hold down screws, 15

Impedance, 64 Initialize, 64 Input connector, 14 Installation, 8 Internal clock, 64

Μ

Main instrument commands, 16 Manuals, part numbers, 7 Maximum input, 28 Mode, 64 Modulation, 64 Multimode cable, 64

Ν

Noise, 37, 38, 39

0

Operating basics, 11 Optical dark compensation, 20 input connector, 14 wavelength gain compensation, 20 Optional accessories list, 7 Options, list, 6 Outputs, 14

Ρ

Phone number, Tektronix, vii Product description, 1 Product support, contact information, vii Programmer interface, 16 Protocol, 64

R

Receive signals recovered clock, 22 recovered data, 22 Recovered clock, 22, 64 data, 22 Reference, 21 receivers, 40

S

Sampling head features, 1 SELECT CHANNEL button, 13 Service support, contact information, vii
Setting, 64
Single-mode cable, 64
Software application version, requirement vs. module model, 1
specifications, 25
Standard accessories, 7
System interaction, 13

Т

Technical support, contact information, vii Tektronix, contacting, vii Trigger, 64

U

URL, Tektronix, vii Usage, 11 User adjustments, 17

V

Vertical accuracy, 31, 32

W

Waveform, 64 Wavelength range, 50 selection, 21 Web site address, Tektronix, vii